
C/C++  Legacy  Class Libraries Reference 

SC09-7652-02  

���





C/C++  Legacy  Class Libraries Reference 

SC09-7652-02  

���



Note! 

Before using this information  and the product it supports, read the information  in “Notices”  on page 203.

Second  Edition  (September  2004)  

IBM  welcomes  your  comments.  You can  send  them  to compinfo@ca.ibm.com.  Be  sure  to include  your  e-mail  

address  if you  want  a reply.  Include  the  title  and  order  number  of this  book,  and  the  page  number  or topic  related  

to your  comment.  

When  you  send  information  to IBM,  you  grant  IBM  a nonexclusive  right  to use  or distribute  the  information  in any  

way  it believes  appropriate  without  incurring  any  obligation  to you.  

© Copyright  International  Business  Machines  Corporation  1996,  2004.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

Preface  . . . . . . . . . . . . . . . v 

Chapter 1. USL I/O Streaming  . . . . . 1 

The  USL  I/O  Stream  Class  Hierarchy   . . . . . . 2  

USL  I/O  Stream  Header  Files  . . . . . . . . . 3 

The  USL  I/O  Stream  Classes  and  stdio.h   . . . . . 4  

Use  Predefined  Streams  . . . . . . . . . . . 4 

Use  Anonymous  Streams   . . . . . . . . . . 5 

Stream  Buffers  . . . . . . . . . . . . . . 7 

Format  State  Flags   . . . . . . . . . . . . 9 

Format  Stream  Output   . . . . . . . . . . 9 

Define  Your Own  Format  State  Flags   . . . . . 14 

Manipulators  . . . . . . . . . . . . . . 16  

Create  Manipulators   . . . . . . . . . . 17 

Define  an APP  Parameterized  Manipulator   . . . 18 

Define  a MANIP  Parameterized  Manipulator   . . 19 

Define  Nonassociative  Parameterized  

Manipulators  . . . . . . . . . . . . . 19  

Thread  Safety  and  USL  I/O  Streaming   . . . . . 20  

Basic  USL  I/O  Stream  Tasks . . . . . . . . . 21  

Receive  Input  from  Standard  Input   . . . . . 21  

Display  Output  on Standard  Output  or Standard  

Error   . . . . . . . . . . . . . . . 23 

Flush  Output  Streams  with  endl  and  flush   . . . 25 

Parse  Multiple  Inputs   . . . . . . . . . . 26 

Open  a File  for Input  and  Read  from  the  File   . . 27  

Open  a File  for Output  and  Write to  the  File   . . 29  

Combine  Input  and  Output  of Different  Types . . 30  

Advanced  USL  I/O  Stream  Tasks  . . . . . . . 30  

Associate  a File  with  a Standard  Input  or Output  

Stream   . . . . . . . . . . . . . . . 30  

Move  through  a file  with  filebuf  Functions   . . . 31  

Define  an Input  Operator  for  a Class  Type  . . . 33  

Define  an Output  Operator  for a Class  Type  . . 35 

Correct  Input  Stream  Errors   . . . . . . . . 37  

Manipulate  Strings  with  the  strstream  Classes  . . 39 

Chapter 2. USL Complex Mathematics 

Library . . . . . . . . . . . . . . . 41 

Review  of Complex  Numbers   . . . . . . . . 41 

Header  Files  and  Constants  for  the  complex  and  

c_exception  Classes  . . . . . . . . . . . . 41  

Construct  complex  Objects   . . . . . . . . 42  

Mathematical  Operators  for  complex   . . . . . . 42 

Use  Mathematical  Operators  for  complex   . . . 43  

Friend  Functions  for  complex   . . . . . . . . 44 

Use  Friend  Functions  with  complex   . . . . . 44  

Input  and  Output  Operators  for complex   . . . . 47 

Use  complex  Input  and  Output  Operators   . . . 47 

Error  Functions   . . . . . . . . . . . . . 48  

Handle  complex  Mathematics  Errors   . . . . . 49 

Example:  Calculate  Roots  . . . . . . . . . . 50 

Example:  Use  Equality  and  Inequality  Operators   . . 52 

Chapter 3. Reference  . . . . . . . . 55 

_CCSID_T   . . . . . . . . . . . . . . . 55 

_CCSID_T  - Hierarchy  List   . . . . . . . . 55 

_CCSID_T  - Member  Functions  and  Data  by 

Group   . . . . . . . . . . . . . . . 55  

_CCSID_T  - Inherited  Member  Functions  and  

Data  . . . . . . . . . . . . . . . . 55 

complex   . . . . . . . . . . . . . . . 55 

complex  - Hierarchy  List   . . . . . . . . . 56 

complex  - Member  Functions  and  Data  by  Group  56 

complex  - Associated  Globals   . . . . . . . 58 

complex  - Inherited  Member  Functions  and  Data  65 

filebuf   . . . . . . . . . . . . . . . . 66  

filebuf  - Hierarchy  List   . . . . . . . . . 66  

filebuf  - Member  Functions  and  Data  by Group  66 

filebuf  - Inherited  Member  Functions  and  Data  72 

fstream   . . . . . . . . . . . . . . . . 73  

fstream  - Hierarchy  List   . . . . . . . . . 73  

fstream  - Member  Functions  and  Data  by Group  73 

fstream  - Inherited  Member  Functions  and  Data  77 

fstreambase   . . . . . . . . . . . . . . 79 

fstreambase  - Hierarchy  List  . . . . . . . . 79 

fstreambase  - Member  Functions  and  Data  by 

Group   . . . . . . . . . . . . . . . 79  

fstreambase  - Inherited  Member  Functions  and  

Data  . . . . . . . . . . . . . . . . 85 

ifstream   . . . . . . . . . . . . . . . 86  

ifstream  - Hierarchy  List   . . . . . . . . . 86  

ifstream  - Member  Functions  and  Data  by Group  86 

ifstream  - Inherited  Member  Functions  and  Data  90 

ios  . . . . . . . . . . . . . . . . . 91 

ios - Hierarchy  List  . . . . . . . . . . . 91 

ios - Member  Functions  and  Data  by Group   . . 92 

ios - Enumerations   . . . . . . . . . . 101  

ios - Inherited  Member  Functions  and  Data   . . 105 

iostream   . . . . . . . . . . . . . . . 106 

iostream  - Hierarchy  List   . . . . . . . . 106 

iostream  - Member  Functions  and  Data  by 

Group  . . . . . . . . . . . . . . . 106  

iostream  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 106 

iostream_withassign   . . . . . . . . . . . 108 

iostream_withassign  - Hierarchy  List   . . . . 108 

iostream_withassign  - Member  Functions  and  

Data  by Group   . . . . . . . . . . . . 108 

iostream_withassign  - Inherited  Member  

Functions  and  Data   . . . . . . . . . . 109 

istream   . . . . . . . . . . . . . . . 111 

istream  - Hierarchy  List   . . . . . . . . . 111 

istream  - Member  Functions  and  Data  by Group  111 

istream  - Inherited  Member  Functions  and  Data  134  

istream_withassign   . . . . . . . . . . . 135  

istream_withassign  - Hierarchy  List   . . . . . 135  

istream_withassign  - Member  Functions  and  

Data  by Group   . . . . . . . . . . . . 135 

istream_withassign  - Inherited  Member  

Functions  and  Data   . . . . . . . . . . 136 

 

© Copyright  IBM Corp. 1996, 2004 iii



istrstream   . . . . . . . . . . . . . . 138 

istrstream  - Hierarchy  List   . . . . . . . . 138 

istrstream  - Member  Functions  and  Data  by  

Group  . . . . . . . . . . . . . . . 138  

istrstream  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 142 

ofstream   . . . . . . . . . . . . . . . 143 

ofstream  - Hierarchy  List   . . . . . . . . 143 

ofstream  - Member  Functions  and  Data  by  

Group  . . . . . . . . . . . . . . . 143  

ofstream  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 148 

ostream   . . . . . . . . . . . . . . . 149 

ostream  - Hierarchy  List  . . . . . . . . . 149 

ostream  - Member  Functions  and  Data  by  

Group  . . . . . . . . . . . . . . . 149  

ostream  - Inherited  Member  Functions  and  Data  162 

ostream_withassign   . . . . . . . . . . . 163 

ostream_withassign  - Hierarchy  List  . . . . . 163 

ostream_withassign  - Member  Functions  and  

Data  by  Group   . . . . . . . . . . . . 163 

ostream_withassign  - Inherited  Member  

Functions  and  Data   . . . . . . . . . . 164 

ostrstream   . . . . . . . . . . . . . . 165  

ostrstream  - Hierarchy  List   . . . . . . . . 165  

ostrstream  - Member  Functions  and  Data  by  

Group  . . . . . . . . . . . . . . . 166  

ostrstream  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 168 

stdiobuf   . . . . . . . . . . . . . . . 170 

stdiobuf  - Hierarchy  List   . . . . . . . . 170 

stdiobuf  - Member  Functions  and  Data  by  

Group  . . . . . . . . . . . . . . . 170  

stdiobuf  - Inherited  Member  Functions  and  Data  171 

stdiostream   . . . . . . . . . . . . . . 172  

stdiostream  - Hierarchy  List   . . . . . . . 172 

stdiostream  - Member  Functions  and  Data  by 

Group  . . . . . . . . . . . . . . . 172  

stdiostream  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 173 

streambuf   . . . . . . . . . . . . . . 174  

streambuf  - Hierarchy  List   . . . . . . . . 175  

streambuf  - Member  Functions  and  Data  by 

Group  . . . . . . . . . . . . . . . 175  

streambuf  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 189 

strstream   . . . . . . . . . . . . . . . 189 

strstream  - Hierarchy  List   . . . . . . . . 189 

strstream  - Member  Functions  and  Data  by 

Group  . . . . . . . . . . . . . . . 189  

strstream  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 192 

strstreambase   . . . . . . . . . . . . . 193  

strstreambase  - Hierarchy  List  . . . . . . . 193  

strstreambase  - Member  Functions  and  Data  by 

Group  . . . . . . . . . . . . . . . 193  

strstreambase  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 194 

strstreambuf  . . . . . . . . . . . . . . 195 

strstreambuf  - Hierarchy  List   . . . . . . . 195 

strstreambuf  - Member  Functions  and  Data  by 

Group  . . . . . . . . . . . . . . . 195  

strstreambuf  - Inherited  Member  Functions  and  

Data   . . . . . . . . . . . . . . . 202 

Notices  . . . . . . . . . . . . . . 203 

Programming  Interface  Information   . . . . . . 204 

Trademarks  and  Service  Marks   . . . . . . . 205

 

iv C/C++  Legacy  Classes



Preface  

Previous  releases  of the  IBM  C/C++  compiler  on  z/OS,  AIX,  and  OS/400  included  

support  for  the  IBM  Open  Class  (IOC)  Library.  This  support  has  been  removed  

from  the  compiler  or  will  be  removed  from  the  compiler.  

The  UNIX  System  Laboratories  (USL)  I/O  Stream  Library  and  Complex  

Mathematics  Library  are  still  supported  on  z/OS,  AIX,  and  OS/400.  Although  

support  for  these  classes  is not  being  removed  at this  time,  it is recommended  that  

you  migrate  to  the  Standard  C++  iostream  and  complex  classes.  This  is especially  

important  if you  are  migrating  other  IOC  streaming  classes  to  Standard  C++  

Library  streaming  classes,  because  combining  USL  and  Standard  C++  Library  

streams  in  one  application  is not  recommended.  

This  manual  provides  information  about  the  USL  I/O  Stream  Library  and  the  

Complex  Mathematics  Library.  For  information  about  how  to  migrate  away  from  

these  classes,  see  the  IBM  Open  Class  Library  Transition  Guide. 

The  following  symbols  indicate  information  that  is specific  to AIX,  OS/400,  or  

z/OS:  

AIX
   

400
   

z/OS
   

 

© Copyright  IBM Corp. 1996, 2004 v



vi C/C++  Legacy  Classes



Chapter  1.  USL  I/O  Streaming  

This  section  refers  to  the  USL  I/O  Stream  Library.  

We recommend  that  you  use  the  standard  C++  stream  classes  instead  of the  USL  

I/O  Stream  Library  to  develop  thread-safe  applications.  For  more  information  

about  the  Standard  C++  I/O  Stream  Library,  see  the  Standard  C++  Library  Reference.  

The  USL  I/O  Stream  Library  provides  the  standard  input  and  output  capabilities  

for  C++.  In  C++,  input  and  output  are  described  in terms  of  streams. The  

processing  of  these  streams  is done  at two  levels.  The  first  level  treats  the  data  as  

sequences  of  characters;  the  second  level  treats  it as  a series  of values  of  a 

particular  type.  

There  are  two  primary  base  classes  for  the  USL  I/O  Stream  Library:  

1.   The  streambuf  class  and  the  classes  derived  from  it (strstreambuf,  stdiobuf,  and  

filebuf)  implement  the  stream  buffers.  Stream  buffers  act  as  temporary  

repositories  for  characters  that  are  coming  from  the  ultimate  producers  of input  

or  are  being  sent  to the  ultimate  consumers  of output.  

2.   The  ios  class  maintains  formatting  and  error-state  information  for  these  streams.  

The  classes  derived  from  ios  implement  the  formatting  of these  streams.  This  

formatting  involves  converting  sequences  of characters  from  the  stream  buffer  

into  values  of  a particular  type  and  converting  values  of  a particular  type  into  

their  external  display  format.  

The  USL  I/O  Stream  Library  predefines  streams  for  standard  input,  standard  

output,  and  standard  error. If you  want  to  open  your  own  streams  for  input  or  

output,  you  must  create  an  object  of  an  appropriate  I/O  Stream  class.  The  iostream  

constructor  takes  as  an  argument  a pointer  to  a streambuf  object.  This  object  is  

associated  with  the  device,  file,  or  array  of  bytes  in memory  that  is going  to  be  the  

ultimate  producer  of  input  or  the  ultimate  consumer  of output.  

Input  and  Output  for  User-Defined  Classes  

You can  overload  the  input  and  output  operators  for  the  classes  that  you  create  

yourself.  Once  you  have  overloaded  the  input  and  output  operators  for  a class,  

you  can  perform  input  and  output  operations  on  objects  of  that  class  in  the  same  

way  that  you  would  perform  input  and  output  on  char, int,  double,  and  the  other  

built-in  types.  

 

© Copyright  IBM Corp. 1996, 2004 1



The USL I/O Stream Class Hierarchy 

The  USL  I/O  Stream  Library  has  two  base  classes,  streambuf  and  ios:  

  

 

The  streambuf  class  implements  stream  buffers. streambuf  is the  base  class  for  the  

following  classes:  

v   filebuf  

v   stdiobuf  

v   strstreambuf  

The  ios  class  maintains  formatting  and  error  state  information  for  streams.  Streams  

are  implemented  as  objects  of the  following  classes  that  are  derived  from  ios:  

v   istream  

v   stdiostream  

v   ostream  

The  classes  that  are  derived  from  ios  are  themselves  base  classes.  

The  istream  class  is the  input  stream  class.  It  implements  stream  buffer  input,  or  

input  operations.  The  following  classes  are  derived  from  istream:  

v   ifstream  

v   istream_withassign  

v   istrstream  

v   iostream  

The  ostream  class  is  the  output  stream  class.  It implements  stream  buffer  output,  

or  output  operations.  The  following  classes  are  derived  from  ostream:  

v   ofstream  

 

2 C/C++  Legacy  Classes



v   ostream_withassign  

v   ostrstream  

v   iostream  

The  iostream  class  combines  istream  and  ostream  to  implement  input  and  output  

to  stream  buffers.  The  following  classes  are  derived  from  iostream:  

v   fstream  

v   iostream_withassign  

v   strstream  

The  USL  I/O  Stream  Library  also  defines  other  classes,  including  fstreambase  and  

strstreambase.  These  classes  are  meant  for  the  internal  use  of the  USL  I/O  Stream  

Library.  Do  not  use  them  directly.  

USL I/O Stream Header Files 

To use  a USL  I/O  Stream  class,  you  must  include  the  appropriate  header  files  for  

that  class.  The  following  lists  USL  I/O  Stream  header  files  and  the  classes  that  they  

cover:  

The  header  file  iostream.h  contains  declarations  for  the  basic  classes:  

v   strstreambuf  

v   ios  

v   istream  

v   istream_withassign  

v   ostream  

v   ostream_withassign  

v   iostream  

v   iostream_withassign  

The  header  file  fstream.h  contains  declarations  for  the  classes  that  deal  with  files:  

v   filebuf  

v   ifstream  

v   ofstream  

v   fstream  

The  header  file  stdiostream.h  contains  declarations  for  stdiobuf  and  stdiostream,  

the  classes  that  specialize  streambuf  and  ios,  respectively,  to  use  the  FILE  

structures  defined  in the  C  header  file  stdio.h.  

400
   

The  8.3  file  naming  convention  compliant  name  of this  file  is stdiostr.h.  

Under  IFS,  you  can  use  either  the  short  name  or  the  long  name  (stdiostream.h).  

The  header  file  strstream.h  contains  declarations  for  the  classes  that  deal  with  

character  strings.  

400
   

The  8.3  file  naming  convention  compliant  name  of this  file  is strstrea.h.  

Under  IFS,  you  can  use  either  the  short  name  or  the  long  name  (strstream.h).  

The  first  “str”  in  each  of  these  names  stands  for  “string”:  

v   istrstream  

 

Chapter  1. USL I/O Streaming 3



v   ostrstream  

v   strstream  

v   strstreambuf  

The  header  file  iomanip.h  contains  declarations  for  the  parameterized  

manipulators.  Manipulators  are  values  that  you  can  insert  into  streams  or  extract  

from  streams  to  affect  or  query  the  behavior  of the  streams.  

The  header  file  stream.h  is used  for  compatibility  with  earlier  versions  of  the  USL  

I/O  Stream  Library.  It includes  iostream.h,  fstream.h,  stdiostream.h,  and  iomanip.h,  

along  with  some  definitions  needed  for  compatibility  with  the  AT&T  C++  

Language  System  Release  1.2.  Only  use  this  header  file  with  existing  code;  do  not  

use  it with  new  C++  code.  

If you  use  the  obsolete  function  form()  declared  in  stream.h,  there  is a limit  to the  

size  of  the  format  specifier.  If  you  call  form()  with  a format  specifier  string  longer  

than  this  limit,  a runtime  message  will  be  generated  and  the  program  will  

terminate.  

The USL I/O Stream Classes and stdio.h 

In  both  C++  and  C,  input  and  output  are  described  in  terms  of  sequences  of  

characters,  or  streams. The  USL  I/O  Stream  Library  provides  the  same  facilities  in 

C++  that  stdio.h  provides  in  C,  but  it also  has  the  following  advantages  over  

stdio.h:  

v   The  input  or  extraction  (>>)  operator  and  the  output  or  insertion  (<<)  operator  

are  typesafe.  

v   You can  define  input  and  output  for  your  own  types  or  classes  by  overloading  

the  input  and  output  operators.  This  gives  you  a uniform  way  of  performing  

input  and  output  for  different  types  of data.  

v   The  input  and  output  operators  are  more  efficient  than  scanf()  and  printf(),  the  

analogous  C  functions  defined  in  stdio.h.  Both  scanf()  and  printf()  take  format  

strings  as  arguments,  and  these  format  strings  have  to  be  parsed  at run time.  

This  parsing  can  be  time-consuming.  The  bindings  for  the  USL  I/O  Stream  

output  and  input  operators  are  performed  at compile  time,  with  no  need  for  

format  strings.  This  can  improve  the  readability  of  input  and  output  in  your  

programs,  and  potentially  the  performance  as well.

Use Predefined Streams 

In  addition  to  giving  you  the  facilities  to  define  your  own  streams  for  input  and  

output,  the  USL  I/O  Stream  Library  also  provides  the  following  predefined  

streams:  

v   cin  is the  standard  input  stream.  

AIX
   

z/OS
   

file  descriptor  = 0. 

v   cout  is  the  standard  output  stream.  

AIX
   

z/OS
   

file  descriptor  = 1. 

v   cerr  is the  standard  error  stream.  Output  to  this  stream  is unit-buffered.  

Characters  sent  to  this  stream  are  flushed  after  each  output  operation.  

AIX
   

z/OS
   

file  descriptor  = 2. 

 

4 C/C++  Legacy  Classes



v   clog  is  also  an  error  stream,  but  unlike  the  output  to  cerr,  the  output  to clog  is 

stream-buffered.  Characters  sent  to  this  stream  are  flushed  only  when  the  stream  

becomes  full  or  when  it  is explicitly  flushed.  

AIX
   

z/OS
   

file  descriptor  = 2. 

The  predefined  streams  are  initialized  before  the  constructors  for  any  static  objects  

are  called.  You can  use  the  predefined  streams  in  the  constructors  for  static  objects.  

The  predefined  streams  cin,  cerr,  and  clog  are  tied  to  cout.  As  a result,  if you  use  

cin,  cerr, or  clog,  cout  is flushed.  That  is, the  contents  of  cout  are  sent  to  their  

ultimate  consumer.  

Use Anonymous Streams 

An  anonymous  stream  is a stream  that  is created  as  a temporary  object.  Because  it  is 

a temporary  object,  an  anonymous  stream  requires  a const  type  modifier  and  is not  

a modifiable  lvalue.  Unlike  the  ATT C++  Language  System  Release  2.1,  the  

compiler  does  not  allow  a non-const  reference  argument  to  be  matched  with  a 

temporary  object.  User-defined  input  and  output  operators  usually  accept  a 

non-const  reference  (such  as  a reference  to  an  istream  or  ostream  object)  as  an 

argument.  Such  an  argument  cannot  be  initialized  by  an  anonymous  stream,  and  

thus  an  attempt  to  use  an  anonymous  stream  as  an  argument  to a user-defined  

input  or  output  operator  will  usually  result  in  a compile-time  error. 

In  the  following  example,  three  ways  of  writing  a character  to  and  reading  it from  

a file  are  shown:  

1.   Function  f()  uses  anonymous  streams  with  the  built-in  char  type.  This  

compiles  and  runs successfully.  

2.   Function  g()  uses  anonymous  streams  with  a class  that  has  a char  as  its  only  

data  member,  and  that  has  input  and  output  operators  defined  for  it.  This  

produces  a compilation  error  if you  define  anon  when  you  compile.  Otherwise,  

this  part  of  the  program  is not  compiled.  

3.   Function  h()uses named  streams  to  write  a class  object  to and  read  it  from  a 

file.  This  compiles  and  runs successfully:
// Using  anonymous  streams  

  

#include  <fstream.h>  

  

class  MyClass  { 

public:  

  char  a; 

}; 

  

istream&  operator>>(istream&  aStream,  MyClass  mc) { 

  return  aStream  >> mc.a;  

} 

  

ostream&  operator<<(ostream&  aStream,  MyClass  mc) { 

  return  aStream  << mc.a;  

} 

  

// 1. Use  an anonymous  stream  with  a built-in  type;  this  works  

  

void  f()  { 

  char  a = ’a’;  

  

  //  write  to  the  file  

  fstream(“file1.abc”,ios::out)  << a << endl;

 

Chapter  1. USL I/O Streaming 5



// read  from  the  file  

  fstream(“file1.abc”,ios::in)  >>  a; 

  

  // show  what  was  in the file  

  cout  << a << endl;  

} 

  

#ifdef  anon  

  

// 2. Use  an anonymous  stream  with  a class  type  

// This  produces  compilation  errors  if “anon”  is defined:  

  

void  g()  { 

  MyClass  b; 

  b.a  =’b’;  

  

  // write  to the  file  

  fstream(“file1.abc”,ios::out)  << b << endl;  

  

  // read  from  the  file  

  fstream(“file1.abc”,ios::in)  >>  b; 

  

  // show  what  was  in the file  

  cout  << b << endl;  

} 

  

#endif  

  

// 3. Use  a named  stream  with  a class  type;  this  works  

  

void  h()  { 

  MyClass  c; 

  c.a  =’c’;  

  

  // define  and  open  the  file  

  fstream  File2(“file2.abc”,ios::out);  

  

  // write  to the  file  

  File2  << c << endl;  

  

  //close  the  file  

  File2.close();  

  

  // reopen  for  input  

  File2.open(“file2.abc”,ios::in);  

  

  // read  from  the  file  

  File2  >> c; 

  

  // show  what  was  in the file  

  cout  << c << endl;  

} 

  

int  main(int  argc,  char  *argv[])  { 

  f();  

#ifdef  anon  

  g();  

#endif  

  h();  

  return  0; 

} 

If you  compile  the  above  example  with  anon  defined,  compilation  fails  with  

messages  that  resemble  the  following:  

 

6 C/C++  Legacy  Classes



Call  does  not  match  any argument  list  for  "ostream::operator<<".  

Call  does  not  match  any argument  list  for  "istream::operator>>".  

If  you  compile  without  anon  defined,  the  letters  ’a’  and  ’c’  are  written  to  standard  

output.  

Stream Buffers 

One  of the  most  important  concepts  in the  USL  I/O  Stream  Library  is the  stream  

buffer.  The  streambuf  class  implements  some  of the  member  functions  that  define  

stream  buffers,  but  other  specialized  member  functions  are  left  to  the  classes  that  

are  derived  from  streambuf:  strstreambuf,  stdiobuf,  and  filebuf.  

The  AT&T  and  UNIX  System  Laboratories  C++  Language  System  documentation  

use  the  terms  reserve  area  and  buffer  instead  of stream  buffer. 

What  Does  a Stream  Buffer  Do?  

A stream  buffer  acts  as a buffer  between  the  ultimate  producer  (the  source  of data)  

or  ultimate  consumer  (the  target  of data)  and  the  member  functions  of  the  classes  

derived  from  ios  that  format  this  raw  data.  The  ultimate  producer  can  be  input  

from  the  user,  a file,  a device,  or  an  array  of  bytes  in  memory.  The  ultimate  

consumer  can  be  a file,  a device,  or  an  array  of  bytes  in  memory.  

Why  Use  a Stream  Buffer?  

In  most  operating  systems,  a system  call  to read  data  from  the  ultimate  producer  

or  write  it  to  the  ultimate  consumer  is  an  expensive  operation.  If your  applications  

can  reduce  the  number  of system  calls  they  have  to make,  performance  may  

improve.  By  acting  as  a buffer  between  the  ultimate  producer  or  ultimate  

consumer  and  the  formatting  functions,  a stream  buffer  can  reduce  the  number  of 

system  calls  that  are  made.  

Consider,  for  example,  an  application  that  is reading  data  from  the  ultimate  

producer.  If  there  is no  buffer,  the  application  has  to  make  a system  call  for  each  

character  that  is  read.  However,  if the  application  uses  a stream  buffer,  system  calls  

will  only  be  made  when  the  buffer  is empty.  Each  system  call  will  read  enough  

characters  from  the  ultimate  producer  (if  they  are  available)  to  fill  the  buffer  again.  

z/OS
   

The  main  reason  to  use  stream  buffers  on  z/OS  is to  ensure  optimal  

portability.  

How  is a stream  buffer  implemented?  

A stream  buffer  is  implemented  as  an  array  of bytes.  For  each  stream  buffer,  

pointers  are  defined  that  point  to  elements  in  this  array  to  define  the  get  area  (the  

space  that  is available  to  accept  bytes  from  the  ultimate  producer),  and  the  put  area  

(the  space  that  is  available  to  store  bytes  that  are  on  their  way  to  the  ultimate  

consumer).  

A stream  buffer  does  not  necessarily  have  separate  get  and  put  areas:  

v   A stream  buffer  that  is used  for  input,  such  as one  that  is attached  to  an  istream  

object,  has  a get  area.  

v   A stream  buffer  that  is used  for  output,  such  as  the  one  that  is attached  to  an  

ostream  object,  has  a put  area.  

 

Chapter  1. USL I/O Streaming 7



v   A stream  buffer  that  is used  for  both  input  and  output,  such  as  the  one  that  is 

attached  to  an  iostream  object,  has  both  a get  area  and  a put  area.  

v   In  stream  buffers  implemented  by  the  filebuf  class  that  are  specialized  to use  

files  as  an  ultimate  producer  or  ultimate  consumer,  the  get  and  put  areas  

overlap.  

The  following  member  functions  of the  streambuf  class  return  pointers  to  get  and  

put  boundaries  of  areas  in  a stream  buffer:  

 Member  function  Description  

base  Returns  a pointer  to the  beginning  of the stream  buffer.  

eback  Returns  a pointer  to the  beginning  of the space  available  

for putback. Characters  that  are  putback  are  returned  to the 

get area  of the stream  buffer.  

gptr  Returns  the  get  pointer  (a pointer  to the beginning  of the  get 

area).  The  space  between  gptr  and  egptr  has  been  filled  by 

the ultimate  producer.  

egptr  Returns  a pointer  to the  end  of the  get area.  

pbase  Returns  a pointer  to the  beginning  of the space  available  

for the  put  area.  

pptr  Returns  the  put  pointer  (a pointer  to the  beginning  of the  

put  area).  The  space  between  pbase  and  pptr  is filled  with  

bytes  that  are  waiting  to be sent  to the  ultimate  consumer.  

The  space  between  pptr  and  epptr  is available  to accept  

characters  from  the  application  program  that  are  on their  

way  to the  ultimate  consumer.  

epptr  Returns  a pointer  to the  end  of the  put  area.  

ebuf  Returns  a pointer  to the  end  of the  stream  buffer.
  

In  the  actual  implementation  of stream  buffers,  the  pointers  returned  by  these  

functions  point  at  char  values.  In  the  abstract  concept  of  stream  buffers,  on  the  

other  hand,  these  pointers  point  to  the  boundary  between  char  values.  To establish  

a correspondence  between  the  abstract  concept  and  the  actual  implementation,  you  

should  think  of  the  pointers  as  pointing  to the  boundary  just  before  the  character  

that  they  actually  point  at.  

The  following  diagram  is the  structure  of  a stream  buffer:  

  

 

 

8 C/C++  Legacy  Classes



Format State Flags 

The  ios  class  defines  an  enumeration  of  format  state  flags  that  you  can  use  to affect  

the  formatting  of  data  in  USL  I/O  streams.  The  following  list  shows  the  formatting  

features  and  the  format  flags  that  control  them:  

v   Whitespace  and  padding:  ios::skipws,  ios::left,  ios::right,  ios::internal  

v   Base  conversion:  ios::dec,  ios::hex,  ios::oct,  ios::showbase  

v   Integral  formatting:  ios::showpos  

v   Floating-point  formatting:  ios::fixed,  ios::scientific,  ios::showpoint  

v   Uppercase  and  lowercase:  ios::uppercase  

v   Buffer  flushing:  ios::stdio,  ios::unitbuf

Format Stream Output 

The  USL  I/O  Stream  Library  lets  you  define  how  output  should  be  formatted  on  a 

stream-by-stream  basis  within  your  program.  Most  formatting  applies  to numeric  

data:  what  base  integers  should  be  written  to the  output  stream  in,  how  many  

digits  of  precision  floating-point  numbers  should  have,  whether  they  should  

appear  in scientific  or  fixed-point  format.  Other  formatting  applies  to  any  of the  

built-in  types,  and  to  your  own  types  if you  design  your  class  output  operators  to  

check  the  format  state  of  a stream  to  determine  what  formatting  action  to take.  

This  section  describes  a number  of techniques  you  can  use  to  change  the  way  data  

is  written  to  output  streams.  One  common  characteristic  of  most  of the  methods  

described  (other  than  the  method  of changing  the  output  field’s  width)  is that  each  

format  state  setting  applies  to  its  output  stream  until  it  is explicitly  cleared,  or  is  

overridden  by  a mutually  exclusive  format  state.  This  differs  from  the  C printf()  

family  of  output  functions,  in  which  each  printf()  statement  must  define  its  

formatting  information  individually.  

ios  Methods  and  Manipulators  

For  some  of  the  format  flags  defined  for  the  ios  class,  you  can  set  or  clear  them  

using  an  ios  function  and  a flag  name,  or  by  using  a manipulator.  With  

manipulators  you  can  place  the  change  to  a stream’s  state  within  a list  of  outputs  

for  that  stream.  The  following  example  shows  two  ways  of  changing  the  base  of an  

output  stream  from  decimal  to octal.  The  first,  which  is more  difficult  to read,  uses  

the  setf()  function  to set  the  basefield  field  in  the  format  state  to octal.  The  second  

way  uses  a manipulator,  oct,  within  the  output  statement,  to  accomplish  the  same  

thing:  

#include  <iostream.h>  

int  main(int  argc,  char  *argv[])  { 

   int  a=9;  

   cout.setf(ios::oct,ios::basefield);  

   cout  << a << endl;  

// assume  format  state  gets  changed  here,  so we must  change  it back  

   cout  << oct  << a << endl;  

   return  0;  

   } 

Note  that  you  do  not  need  to  qualify  a manipulator,  provided  you  do  not  create  a 

variable  or  function  of the  same  name  as  the  manipulator.  If a variable  oct  were  

declared  at  the  start  of  the  above  example,  cout  <<  oct  ...  would  write  the  variable  

oct  to  standard  output.  cout  <<  ios::oct  ... would  change  the  format  state.  

Use  setf,  unsetf,  and  flags  

 

Chapter  1. USL I/O Streaming 9



There  are  two  versions  of the  setf()  function  of  ios.  One  version  takes  a single  long  

value  newset  as  argument;  its  effect  is to  set  any  flags  set  in  newset, without  

affecting  other  flags.  This  version  is  useful  for  setting  flags  that  are  not  mutually  

exclusive  with  other  flags  (for  example,  ios::uppercase).  The  other  version  takes  

two  long  values  as  arguments.  The  first  argument  determines  what  flags  to set,  

and  the  second  argument  determines  which  groups  of flags  to  clear  before  any  flags  

are  set.  The  second  argument  lets  you  clear  a group  of  flags  before  setting  one  of  

that  group.  The  second  argument  is useful  for  flags  that  are  mutually  exclusive.  If 

you  try  to  change  the  base  field  of the  cout  output  stream  using  cout.setf(ios::oct);,  

setf()  sets  ios::oct  but  it does  not  clear  ios::dec  if it  is set,  so  that  integers  continue  

to  be  written  to  cout  in  decimal  notation.  However,  if you  use  

cout.setf(ios::oct,ios::basefield);,  all  bits  in  basefield  are  cleared  (oct,  dec,  and  hex)  

before  oct  is  set,  so  that  integers  are  then  written  to  cout  in octal  notation.  

To clear  format  state  flags,  you  can  use  the  unsetf()  function,  which  takes  a single  

argument  indicating  which  flags  to  clear. 

To set  the  format  state  to a particular  combination  of  flags  (without  regard  for  the  

pre-existing  format  state),  you  can  use  the  flags(long  flagset) member  function  of  

ios.  The  value  of  flagset  determines  the  resulting  values  of all  the  flags  of  the  

format  state.  

The  following  example  demonstrates  the  use  of flags(),  setf(),  and  unsetf().  The  

main()  function  changes  the  flags  as  follows:  

1.   The  original  settings  of  the  format  state  flags  are  determined,  using  flags().  

These  settings  are  saved  in  the  variable  originalFlags.  

2.   ios::fixed  is set,  and  all  other  flags  are  cleared,  using  flags(ios::fixed).  

3.   ios::adjustfield  is  set  to ios::right,  without  affecting  other  fields,  using  

setf(ios::right).  

4.   ios::floatfield  is  set  to  ios::scientific,  and  ios::adjustfield  is set  to  ios::left,  without  

affecting  other  fields.  The  call  to setf()  is setf(ios::scientific  | ios::left,  

ios::floatfield|ios::adjustfield).  

5.   The  original  format  state  is restored,  by  calling  flags()  with  an  argument  of 

originalFlags,  which  contains  the  format  state  determined  in  step  1.  

The  function  showFlags()  determines  and  displays  the  current  flag  settings.  It 

obtains  the  value  of the  settings  using  flags(),  and  then  excludes  ios::oct  from  the  

result  before  displaying  the  result  in  octal.  This  exclusion  is done  to  display  the  

result  in  octal  without  causing  the  octal  setting  for  ios::basefield  to  show  up  in  the  

program’s  output.  

//Using  flags(),  flags(long),  setf(long),  and  setf(long,long)  

#include  <iostream.h>  

void  showFlags()  { 

// save  altered  flag  settings,  but  clear  ios::oct  from  them  

   long  flagSettings  = cout.flags()  & (~ios::oct)  ; 

// display  those  flag  settings  in octal  

   cout  <<  oct  << flagSettings  << endl;  

} 

int  main(int  argc,  char  *argv[])  { 

// get  and  display  current  flag  settings  using  flags()  

   cout  <<  “flags():  ”; 

   long  originalFlags  = cout.flags();  

   showFlags();  

 

10 C/C++  Legacy  Classes



// change  format  state  using  flags(long)  

   cout  << “flags(ios::fixed):  ”; 

   cout.flags(ios::fixed);  

   showFlags();  

// change  adjust  field  using  setf(long)  

   cout  << “setf(ios::right):  ”;  

   cout.setf(ios::right);  

   showFlags();  

// change  floatfield  using  setf(long,  long)  

   cout  << “setf(ios::scientific  | ios::left,\n”  

        << “ios::floatfield  | ios::adjustfield):  ”; 

   cout.setf(ios::scientific  | ios::left,ios::floatfield  |ios::adjustfield);  

   showFlags();  

// reset  to original  setting  

   cout  << “flags(originalFlags):  ”; 

   cout.flags(originalFlags);  

   showFlags();  

   return  0;  

 } 

This  example  produces  the  following  output:  

flags():                              21 

flags(ios::fixed):                    10000  

setf(ios::right):                     10004  

setf(ios::scientific  | ios::left,  

ios::floatfield  | ios::adjustfield):  4002  

flags(originalFlags):                 21 

Note  that  if you  specify  conflicting  flags,  the  results  are  unpredictable.  For  

example,  the  results  will  be  unpredictable  if you  set  both  ios::left  and  ios::right  in  

the  format  state  of  iosobj. You should  set  only  one  flag  in each  set  of  the  following  

three  sets:  

v   ios::left,  ios::right,  ios::internal  

v   ios::dec,  ios::oct,  ios::hex  

v   ios::scientific,  ios::fixed.

Change  the  Notation  of  Floating-Point  Values  

You can  change  the  notation  and  precision  of  floating-point  values  to  match  your  

program’s  output  requirements.  To change  the  precision  with  which  floating-point  

values  are  written  to  output  streams,  use  ios::precision().  By  default,  an  output  

stream  writes  float  and  double  values  using  six  significant  digits.  The  following  

example  changes  the  precision  for  the  cout  predefined  stream  to  17:  

   cout.precision(17);  

You can  also  change  between  scientific  and  fixed  notations  for  floating-point  

values.  Use  the  two-parameter  version  of the  setf()  member  function  of ios  to  set  

the  appropriate  notation.  The  first  argument  indicates  the  flag  to  be  set;  the  second  

argument  indicates  the  field  of  flags  the  change  applies  to.  For  example,  to change  

the  notation  of  an  output  stream  called  File6,  use:  

   File6.setf(ios::scientific,ios::floatfield);  

This  statement  clears  the  settings  of the  ios::floatfield  field  and  then  sets  it to  

ios::scientific.  

 

Chapter 1. USL I/O Streaming 11



The  ios::uppercase  format  state  variable  affects  whether  the  “e”  used  in  

scientific-notation  floating-point  values  is in  uppercase  or  lowercase.  By  default,  it 

is in  lowercase.  To change  the  setting  to  uppercase  for  an  output  stream  called  

TaskQueue,  use:  

   TaskQueue.setf(ios::uppercase);  

The  following  example  shows  the  effect  on  floating-point  output  of changes  made  

to  an  output  stream  using  ios  format  state  flags  and  the  precision  member  

function:  

// How  format  state  flags  and precision()  affect  output  

#include  <iostream.h>  

int  main(int  argc,  char  *argv[])  { 

   double  a=3.14159265358979323846;  

   double  b; 

   long  originalFlags=cout.flags();  

   int  originalPrecision=cout.precision();  

   for  (double  exp=1.;exp<1.0E+25;exp*=100000000.)  { 

      cout  << “Printing  new  value  for b:\n”;  

      b=a*exp;  // Initialize  b to a larger  magnitude  of a 

// Now  print  b in a number  of ways:  

   // In fixed  decimal  notation  

   cout.setf(ios::fixed,ios::floatfield);  

   cout  <<  “ ” << b << ’\n’;  

   // In scientific  notation  

   cout.setf(ios::scientific,ios::floatfield);  

   cout  <<  “ ” <<b  << ’\n’;  

   // Change  the  exponent  from  lower  to uppercase  

   cout.setf(ios::uppercase);  

   cout  <<  “ ” <<b  << ’\n’;  

   // With  12  digits  of  precision,  scientific  notation  

   cout.precision(12);  

   cout  <<  “ ” <<b  << ’\n’;  

   // Same  precision,  fixed  notation  

   cout.setf(ios::fixed,ios::floatfield);  

   // Now  set  everything  back  to defaults  

   cout.flags(originalFlags);  

   cout.precision(originalPrecision);  

   } 

   return  0; 

} 

The  output  from  this  program  is:  

Printing  new  value  for  b: 

   3.141593  

   3.141593e+00  

   3.141593E+00  

   3.141592653590E+00  

Printing  new  value  for  b: 

   314159265.358979  

   3.141593e+08  

   3.141593E+08  

   3.141592653590E+08  

Printing  new  value  for  b: 

   31415926535897932.000000  

   3.141593e+16  

   3.141593E+16  

   3.141592653590E+16  

Printing  new  value  for  b: 

   3141592653589792849657856.000000  

   3.141593e+24  

   3.141593E+24  

   3.141592653590E+24  

 

12 C/C++  Legacy  Classes



Change  the  Base  of  Integral  Values  

For  output  of integral  values,  you  can  choose  decimal,  hexadecimal,  or  octal  

notation.  You can  either  use  setf()  to set  the  appropriate  ios  flag,  or  you  can  place  

the  appropriate  parameterized  manipulator  in  the  output  stream.  The  following  

example  shows  both  methods:  

//Showing  the  base  of integer  values  

#include  <iostream.h>  

#include  <iomanip.h>  

int  main(int  argc,  char  *argv[])  { 

   int  a=148;  

   cout.setf(ios::showbase);  // show  the base  of all integral  output:  

                             // leading  0x means  hexadecimal,  

                             // leading  01 to 07 means  octal,  

                             // leading  1 to 9 means  decimal  

   cout.setf(ios::oct,ios::basefield);  

                             // change  format  state  to octal  

   cout  << a << ’\n’;  

   cout.setf(ios::dec,ios::basefield);  

                             // change  format  state  to decimal  

   cout  << a << ’\n’;  

   cout.setf(ios::hex,ios::basefield);  

                             // change  format  state  to hexadecimal  

   cout  << a << ’\n’;  

   cout  << oct  << a << ’\n’;  // Parameterized  manipulators  clear  the 

   cout  << dec  << a << ’\n’;  // basefield,  then  set  the  appropriate  

   cout  << hex  << a << ’\n’;  // flag  within  basefield.  

   return  0;  

} 

The  ios::showbase  flag  determines  whether  numbers  in  octal  or  hexadecimal  

notation  are  written  to  the  output  stream  with  a leading  “0”  or  “0x”,  respectively.  

You can  set  ios::showbase  where  you  intend  to  use  the  output  as input  to  an  I/O  

Stream  input  stream  later  on.  If  you  do  not  set  ios::showbase  and  you  try  to  use  

the  output  as  input  to another  stream,  octal  values  and  those  hexadecimal  values  

that  do  not  contain  the  digits  a-f  will  be  interpreted  as  decimal  values;  hexadecimal  

values  that  do  contain  any  of  the  digits  a-f  will  cause  an  input  stream  error. 

Set  the  Width  and  Justification  of  Output  Fields  

For  built-in  types,  the  output  operator  does  not  write  any  leading  or  trailing  spaces  

around  values  being  written  to  an  output  stream,  unless  you  explicitly  set  the  field  

width  of  the  output  stream,  using  the  width()  member  function  of ios  or  the  setw()  

parameterized  manipulator.  Both  width()  and  setw()  have  only  a short-term  effect  

on  output.  As  soon  as a value  is written  to the  output  stream,  the  field  width  is 

reset,  so  that  once  again  no  leading  or  trailing  spaces  are  inserted.  If you  want  

leading  or  trailing  blanks  to  appear  on  successively  written  values,  you  can  use  the  

setw()  manipulator  within  the  output  statement.  For  example:  

#include  <iostream.h>  

#include  <iomanip.h>     // required  for use  of setw()  

int  main(int  argc,  char  *argv[])  { 

    int  i=-5,j=7,k=-9;  

    cout  << setw(5)  << i << setw(5)  << j << setw(5)  << k << endl;  

    return  0; 

} 

You can  also  specify  how  values  should  be  formatted  within  their  fields.  If the  

current  width  setting  is greater  than  the  number  of characters  required  for  the  

output,  you  can  choose  between  right  justification  (the  default),  left  justification,  or, 

 

Chapter  1. USL I/O Streaming 13



for  numeric  values,  internal  justification  (the  sign,  if any,  is left-justified,  while  the  

value  is right-justified).  For  example,  the  output  statement  above  could  be  replaced  

with:  

cout  << setw(5)  << i;           // -5 

cout.setf(ios::left,ios::adjustfield);  

cout  << setw(5)  << j;           //  7 

cout.setf(ios::internal,ios::adjustfield);  

cout  << setw(5)  << k << endl;    //  -9 

The  following  shows  two  lines  of  output,  the  first  from  the  original  example,  and  

the  second  after  the  output  statement  has  been  modified  to  use  the  field  

justification  shown  above:  

      -5    7   -9 

      -57     -   9 

Define Your  Own Format State Flags 

If you  have  defined  your  own  input  or  output  operator  for  a class  type,  you  may  

want  to  offer  some  flexibility  in  how  you  handle  input  or  output  of  instances  of 

that  class.  The  USL  I/O  Stream  Library  lets  you  define  stream-specific  flags  that  

you  can  then  use  with  the  format  state  member  functions  such  as setf()  and  

unsetf().  You can  then  code  checks  for  these  flags  in  the  input  and  output  operators  

you  write  for  your  class  types,  and  determine  how  to handle  input  and  output  

according  to  the  settings  of  those  flags.  

For  example,  suppose  you  develop  a program  that  processes  customer  names  and  

addresses.  In  the  original  program,  the  postal  code  for  each  customer  is written  to  

the  output  file  before  the  country  name.  However,  because  of  postal  regulations,  

you  are  instructed  to  change  the  record  order  so  that  the  postal  code  appears  after  

the  country  name.  The  following  example  shows  a program  that  translates  from  

the  old  file  format  to  the  new  file  format,  or from  the  new  file  format  to the  old.  

The  program  checks  the  input  file  for  an  exclamation  mark  as the  first  byte.  If one  

is found,  the  input  file  is in  the  new  format,  and  the  output  file  should  be  in  the  

old  format.  Otherwise  the  reverse  is true. Once  the  program  knows  which  file  

should  be  in  which  format,  it requests  a free  flag  from  each  file’s  stream  object.  It 

reads  in  and  writes  out  each  record,  and  closes  the  file.  The  input  and  output  

operators  for  the  class  check  the  format  state  for  the  defined  flag,  and  order  their  

output  accordingly.  

// Defining  your  own  format  flags  

#include  <fstream.h>  

#include  <stdlib.h>  

long  InFileFormat=0;  

long  OutFileFormat=0;  

class  CustRecord  { 

   public:  

      int  Number;  

      char  Name[48];  

      char  Phone[16];  

      char  Street[128];  

      char  City[64];  

      char  Country[64];  

      char  PostCode[10];  

   }; 

ostream&  operator<<(ostream  &os,  CustRecord  &cust)  { 

   os << cust.Number  << ’\n’  

      << cust.Name  << ’\n’  

      << cust.Phone  << ’\n’  

      << cust.Street  << ’\n’

 

14 C/C++  Legacy  Classes



<< cust.City  << ’\n’;  

   if (os.flags()  & OutFileFormat)     // New file  format  

      os << cust.Country  << ’\n’  

         << cust.PostCode  << endl;  

   else                                // Old  file  format  

      os << cust.PostCode  << ’\n’  

         << cust.Country  << endl;  

   return  os;  

   } 

istream&  operator>>(istream  &is,  CustRecord  &cust)  { 

   is >> cust.Number;  

   is.ignore(1000,’\n’);  // Ignore  anything  up to and  including  new  line  

   is.getline(cust.Name,48);  

   is.getline(cust.Phone,16);  

   is.getline(cust.Street,128);  

   is.getline(cust.City,64);  

   if (is.flags()  & InFileFormat)  {   // New file  format!  

      is.getline(cust.Country,64);  

      is.getline(cust.PostCode,10);  

      } 

   else  { 

      is.getline(cust.PostCode,10);  

      is.getline(cust.Country,64);  

      } 

   return  is;  

   } 

int  main(int  argc,  char*  argv[])  { 

   if (argc!=3)  {                        // Requires  two  parameters  

      cerr  << “Specify  an input  file  and  an output  file\n”;  

      exit(1);  

      } 

   ifstream  InFile(argv[1]);  

   ofstream  OutFile(argv[2],ios::out);  

   InFileFormat  = InFile.bitalloc();      // Allocate  flags  for 

   OutFileFormat  = OutFile.bitalloc();    // each  fstream  

   if (InFileFormat==0  ||                // Exit  if no flag  could  

       OutFileFormat==0)  {               // be allocated  

      cerr  << “Could  not  allocate  a user-defined  format  flag.\n”;  

      exit(2);  

      } 

   if (InFile.peek()==’!’)  {             // ’!’ means  new format  

      InFile.setf(InFileFormat);          // Input  file  is in new  format  

      OutFile.unsetf(OutFileFormat);      // Output  file  is in old  format  

      InFile.get();                       //  Clear  that  first  byte  

      } 

   else  {                                // Otherwise,  write  ’!’  to 

      OutFile  << ’!’;                     //  the  output  file,  set  the  

      OutFile.setf(OutFileFormat);        // output  stream’s  flag,  and  

      InFile.unsetf(InFileFormat);        // clear  the  input  stream’s  

      }                                  //  flag  

   CustRecord  record;  

   while  (InFile.peek()!=EOF)  {         // Now  read  the  input  file  

      InFile  >> record;                  // records  and  write  them  

      OutFile  << record;                 // to  the output  file,  

      } 

   InFile.close();                      // Close  both  files  

   OutFile.close();  

   return  0;  

 } 

The  following  shows  sample  input  and  output  for  the  program.  If you  take  the  

output  from  one  run of the  program  and  use  it  as input  in  a subsequent  run, the  

output  from  the  later  run is the  same  as  the  input  from  the  preceding  one.  

 

Chapter  1. USL I/O Streaming 15



Input  File  Output  File  

3848  

John  Smith  

4163341234  

35 Baby  Point  Road  

Toronto  

M6S  2G2  

Canada  

1255  

Jean  Martin  

0418375882  

48 bis  Ave.  du Belloy  

Le Vesinet  

78110  

France  

!3848  

John  Smith  

4163341234  

35 Baby  Point  Road  

Toronto  

Canada  

M6S 2G2 

1255  

Jean  Martin  

0418375882  

48 bis  Ave.  du Belloy  

Le Vesinet  

France  

78110  

  

Note  that,  in  this  example,  a simpler  implementation  could  have  been  to  define  a 

global  variable  that  describes  the  desired  form  of output.  The  problem  with  such  

an  approach  is  that  later  on,  if the  program  is enhanced  to  support  input  from  or 

output  to  a number  of  different  streams  simultaneously,  all  output  streams  would  

have  to  be  in  the  same  state  (as  far  as  the  user-defined  format  variable  is 

concerned),  and  all  input  streams  would  have  to  be  in  the  same  state.  By  making  

the  user-defined  format  flag  part  of  the  format  state  of a stream,  you  allow  

formatting  to  be  determined  on  a stream-by-stream  basis.  

Manipulators 

Manipulators  provide  a convenient  way  of changing  the  characteristics  of an  input  

or  output  stream,  using  the  same  syntax  that  is  used  to insert  or  extract  values.  

With  manipulators,  you  can  embed  a function  call  in  an  expression  that  contains  a 

series  of  insertions  or  extractions.  Manipulators  usually  provide  shortcuts  for  

sequences  of  iostream  library  operations.  

The  iomanip.h  header  file  contains  a definition  for  a macro  IOMANIPdeclare().  

IOMANIPdeclare()  takes  a type  name  as an  argument  and  creates  a series  of  

classes  you  can  use  to  define  manipulators  for  a given  kind  of  stream.  Calling  the  

macro  IOMANIPdeclare()  with  a type  as  an  argument  creates  a series  of classes  

that  let  you  define  manipulators  for  your  own  classes.  If you  call  

IOMANIPdeclare()  with  the  same  argument  more  than  once  in  a file,  you  will  get  a 

syntax  error. 

Simple  Manipulators  and  Parameterized  Manipulators  

There  are  two  kinds  of manipulators:  simple  and  parameterized. 

Simple  manipulators  do  not  take  any  arguments.  The  following  classes  have  

built-in  simple  manipulators:  

v   ios  

v   istream  

v   ostream  

Parameterized  manipulators  require  one  or  more  arguments.  setfill  (near  the  

bottom  of  the  iomanip.h  header  file)  is an  example  of  a parameterized  manipulator.  

You can  create  your  own  parameterized  manipulators  and  your  own  simple  

manipulators.  

 

16 C/C++  Legacy  Classes



ios  Methods  and  Manipulators  

For  some  of  the  format  flags  defined  for  the  ios  class,  you  can  set  or  clear  them  

using  an  ios  function  and  a flag  name,  or  by  using  a manipulator.  With  

manipulators  you  can  place  the  change  to  a stream’s  state  within  a list  of  outputs  

for  that  stream.  

Create Manipulators 

Create  Simple  Manipulators  for  Your Own  Types 

The  USL  I/O  Stream  Library  gives  you  the  facilities  to  create  simple  manipulators  

for  your  own  types.  Simple  manipulators  that  manipulate  istream  objects  are  

accepted  by  the  following  input  operators:  

   istream  istream::operator>>  (istream&,  istream&  (*f)  (istream&));  

   istream  istream::operator>>  (istream&,  ios&(*f)  (ios&));  

Simple  manipulators  that  manipulate  ostream  objects  are  accepted  by  the  following  

output  operators:  

   ostream  ostream::operator<<  (ostream&,  ostream&(*f)  (ostream&));  

   ostream  ostream::operator<<  (ostream&,  ios&(*f)  (ios&));  

The  definition  of a simple  manipulator  depends  on  the  type  of  object  that  it 

modifies.  The  following  table  shows  sample  function  definitions  to  modify  istream,  

ostream,  and  ios  objects.  

 Class  of object  Sample  function  definition  

istream  istream  &fi(istream&){  /*...*/  } 

ostream  ostream  &fo(ostream&){  /*...*/  } 

ios  ios  &fios(ios&){ /*...*/  }
  

For  example,  if you  want  to  define  a simple  manipulator  line  that  inserts  a line  of 

dashes  into  an  ostream  object,  the  definition  could  look  like  this:  

   ostream  &line(ostream&  os) 

   { 

      return  os << “\n--------------------------------”  

                << “--------------------------------\n”;  

   } 

Thus  defined,  the  line  manipulator  could  be  used  like  this:  

   cout  << line  << “WARNING!  POWER-OUT  IS  IMMINENT!”  << line  << flush;  

This  statement  produces  the  following  output:  

----------------------------------------------------------------  

WARNING!  POWER-OUT  IS  IMMINENT!  

----------------------------------------------------------------  

Create  Parameterized  Manipulators  for  Your Own  Types 

The  USL  I/O  Stream  Library  gives  you  the  facilities  to  create  parameterized  

manipulators  for  your  own  types.  Follow  these  steps  to  create  a parameterized  

manipulator  that  takes  an  argument  of a particular  type  tp:  

 

Chapter  1. USL I/O Streaming 17



1.   Call  the  macro  IOMANIPdeclare(tp).  Note  that  tp  must  be  a single  identifier.  

For  example,  if you  want  tp  to  be  a reference  to  a long  double  value,  use  

typedef  to  make  a single  identifier  to  replace  the  two  identifiers  that  make  up  

the  type  label  long  double:  

     typedef  long  double&  LONGDBLREF  

2.   Determine  the  class  of your  manipulator.  If you  want  to  define  an  APP  

Parameterized  manipulator,  choose  a class  that  has  APP  in  its  name  (an  APP  

class,  also  known  as  an  applicator). If you  want  to  define  a MANIP  

Parameterized  manipulator,  choose  a class  that  has  MANIP  in  its  name  (a 

MANIP  class).  Once  you  have  determined  which  type  of class  to  use,  the  

particular  class  that  you  choose  depends  on  the  type  of  object  that  the  

manipulator  is going  to  manipulate.  The  following  table  shows  the  class  of  

objects  to  be  modified,  and  the  corresponding  manipulator  classes.  

 Class  to be modified  Manipulator  class  

istream  IMANIP(tp) or IAPP(tp) 

ostream  OMANIP(tp) or OAPP(tp) 

iostream  IOMANIP(tp) or IOAPP(tp) 

The  ios  part  of istream  objects  or ostream  objects  SMANIP(tp) or SAPP(tp)
  

3.   Define  a function  f that  takes  an  object  of the  class  tp  as  an  argument.  The  

definition  of  this  function  depends  on  the  class  you  chose  in  step  2, and  is 

shown  in  the  following  table:  

 Class  chosen  Sample  definition  

IMANIP(tp) or IAPP(tp) istream  &f(istream&,  tp){/  *...  */ } 

OMANIP(tp) or OAPP(tp) ostream  &f(ostream&,  tp){/*  ...  */ } 

IOMANIP(tp) or  IOAPP(tp) iostream  &f(iostream&,  tp){/*  ...  */ } 

SMANIP(tp) or SAPP(tp) ios &f(ios&,  tp){/*  ...  */ }
  

4.   Define  the  manipulator.  

Parameterized  manipulators  defined  with  IOMANIP  or  IOAPP  are  not  

associative.  This  means  that  you  cannot  use  such  manipulators  more  than  once  

in  a single  output  statement.

Define an APP Parameterized Manipulator 

In  the  following  example,  the  macro  IOMANIPdeclare  is called  with  the  

user-defined  class  my_class  as  an  argument.  One  of the  classes  that  is produced,  

OAPP(my_class),  is  used  to  define  the  manipulator  pre_print.  

//   Creating  and  using  parameterized  manipulators  

#include  <iomanip.h>  

// declare  class  

class  my_class  { 

   public:  

      char  * s1;  

      const  char  c; 

      unsigned  short  ctr;  

      my_class(char  *theme,  const  char  suffix,  

           unsigned  short  times):  

           s1(theme),  c(suffix),  ctr(times)  {} 

   }; 

// print  a character  an indicated  number  of times  

// followed  by a string  

 

18 C/C++  Legacy  Classes



ostream&  produce_prefix(ostream&  o, my_class  mc) { 

   for  (register  i=mc.ctr;  i; --i)  o << mc.c  ; 

   o << mc.s1;  

   return  o;  

} 

IOMANIPdeclare(my_class);  

// define  a manipulator  for  the  class  my_class  

OAPP(my_class)  pre_print=produce_prefix;  

int  main(int  argc,  char  *argv[])  { 

   my_class  obj(“Hello”,’-’,10);  

   cout  << pre_print(obj)  << endl;  

   return  0;  

} 

This  program  produces  the  following  output:  

----------Hello  

Define a MANIP Parameterized Manipulator 

In  the  following  example,  the  macro  IOMANIPdeclare  is called  with  the  

user-defined  class  my_class  as  an  argument.  One  of the  classes  that  is produced,  

OMANIP(my_class),  is  used  to  define  the  manipulator  pre_print().  

#include  <iostream.h>  

#include  <iomanip.h>  

class  my_class  { 

   public:  char  * s1;  

   const  char  c; 

   unsigned  short  ctr;  

   my_class(char  *theme,  const  char  suffix,  

        unsigned  short  times):  

        s1(theme),  c(suffix),  ctr(times)  {}; 

   }; 

// print  a character  an indicated  number  of times  

// followed  by a string  

ostream&  produce_prefix(ostream&  o, my_class  mc) { 

   for  (register  int  i=mc.ctr;  i; --i)  o << mc.c  ; 

   o << mc.s1;  

   return  o;  

} 

IOMANIPdeclare(my_class);  

// define  a manipulator  for  the  class  my_class  

OMANIP(my_class)  pre_print(my_class  mc)  { 

   return  OMANIP(my_class)  (produce_prefix,mc);  

} 

int  main(int  argc,  char  *argv[])  { 

   my_class  obj(“Hello”,’-’,10);  

   cout  << pre_print(obj)  << “\0”  << endl;  

   return  0;  

} 

This  example  produces  the  following  output:  

----------Hello  

Define Nonassociative Parameterized Manipulators 

The  following  example  demonstrates  that  parameterized  manipulators  defined  

with  IOMANIP  or  IOAPP  are  not  associative.  The  parameterized  manipulator  

mysetw()  is defined  with  IOMANIP.  mysetw()  can  be  applied  once  in  any  

statement,  but  if it is applied  more  than  once,  it causes  a compile-time  error. To 

avoid  such  an  error,  put  each  application  of  mysetw  into  a separate  statement.  

 

Chapter  1. USL I/O Streaming 19



// Nonassociative  parameterized  manipulators  

#include  <iomanip.h>  

iostream&   f(iostream  & io,  int  i) { 

     io.width(i);  

     return  io;  

} 

IOMANIP  (int)  mysetw(int  i) { 

   return  IOMANIP(int)  (f,i);  

} 

iostream_withassign  ioswa;  

int  main(int  argc,  char  *argv[])  { 

   ioswa  = cout;  

   int  i1 = 8,  i2 = 14;  

   // 

   // The  following  statement  does  not cause  a compile-time  

   // error.  

   // 

   ioswa  << mysetw(3)  << i1 << endl;  

   // 

   // The  following  statement  causes  a compile-time  error  

   // because  the  manipulator  mysetw  is applied  twice.  

   // 

   ioswa  << mysetw(3)  << i1 << mysetw(5)  << i2  << endl;  

   // 

   // The  following  statements  are  equivalent  to the  previous  

   // statement,  but  they  do not  cause  a compile-time  error.  

   // 

   ioswa  << mysetw(3)  << i1;  

   ioswa  << mysetw(5)  << i2 << endl;  

   return  0; 

} 

Thread Safety and USL I/O Streaming 

z/OS
   

The  USL  I/O  Stream  Library  provides  thread  safety  at the  object  level.  

This  means  that  it  is  safe  to  have  multiple  threads  manipulate  the  same  object.  This  

library  provides  streaming  operators  for  the  built  in  C++  types.  With  object  level  

thread  safety,  the  output  from  one  streaming  operator  will  be  streamed  in  entirety  

before  the  next.  

AIX
   

400
   

It  is  not  safe  to  access  a stream  object  in  one  thread  while  

modifying  it in  another  thread.  

In  a multi-threaded  environment,  there  is no  guarantee  that  the  output  from  one  

streaming  operator  on  the  same  thread  will  appear  immediately  after  the  output  

from  the  preceding  streaming  operator.  For  example,  given  the  following  scenario,  

either  result  may  occur:  

Scenario:  

 thread  1 cout  << anInt1  << aString1;  

thread  2 cout  << anInt2  << aString2;
  

Result:  

 Desired  anInt1  aString1  anInt2  aString2  

Possible  anInt1  anInt2  aString1  aString2
 

 

20 C/C++  Legacy  Classes



If  order  of  output  from  separate  threads  is important,  then  explicit  programmer  

serialization  is  required.  

Basic USL I/O Stream Tasks  

Receive Input from Standard Input 

When  you  specify  the  iostream.h  header  file  as  a source  file  for  your  project,  four  

streams  are  automatically  defined  for  I/O  use:  cin,  cout,  cerr, and  clog.  The  cin  

stream  is  the  standard  input  stream.  Input  to  cin  comes  from  the  C  standard  input  

stream,  stdin,  unless  cin  has  been  redirected  by  the  user. The  remaining  streams  

can  be  used  for  output.  You can  receive  standard  input  using  the  predefined  input  

stream  and  the  input  operator  (operator>>)  for  the  type  being  read.  In the  

following  example,  an  integer  is read  from  the  input  stream  into  a variable:  

  int  i; 

  cin  >> i; 

An  input  operator  must  exist  for  the  type  being  read  in.  The  USL  I/O  Stream  

Library  defines  input  operators  for  all  C++  built-in  types.  For  types  you  define  

yourself,  you  need  to provide  your  own  input  operators.  If you  attempt  to  read  

input  into  a variable  and  no  input  operator  is defined  for  the  type  of  that  variable,  

the  compiler  displays  an  error  message  with  text  similar  to the  following:  

Call  does  not  match  any parameter  list  for  “operator>>”.  

Use  Input  Streams  other  than  cin  

You can  use  the  same  techniques  for  input  from  other  input  streams  as  for  input  

from  cin.  The  only  difference  is that,  for  other  input  streams,  your  program  must  

define  the  stream.  Suppose  that  you  have  defined  a stream  attached  to a file  

opened  for  input,  and  have  called  that  stream  myin. You can  read  into  myin  from  

the  file  by  specifying  myin  instead  of cin:  

  //  assume  that  the  input  file  is associated  

  //  with  stream  myin  

  

  

  int  a, b; 

  myin  >> a >>  b; 

Multiple  Variables  in  an  Input  Statement  

You can  receive  input  from  a stream  into  a succession  of  variables  with  a single  

input  statement,  by  repeating  the  input  operator  (>>)  after  each  input,  and  then  

specifying  the  next  variable  to  read  in.  You can  combine  variables  of  multiple  types  

in  an  input  statement,  without  having  to specify  the  types  of those  variables  in the  

input  statement.  The  following  example  demonstrates  this:  

  int  i, j, k;  

  float  m,  n;  

  

  cin  >> i >> j >> k >> m >> n; 

The  above  syntax  provides  identical  results  to  the  following  multiple  input  

statements:  

  int  i, j, k;  

  float  m,  n;  

  cin  >> i;

 

Chapter  1. USL I/O Streaming 21



cin  >> j; 

  cin  >> k; 

  cin  >> m; 

  cin  >> n; 

If you  want  to  enhance  the  readability  of  your  source  code,  break  the  single  input  

statement  up  with  white  space,  instead  of  separating  it into  multiple  input  

statements:  

  int  i, j, k; 

  float  m, n; 

  cin  >> i 

      >> j 

      >> k 

      >> m 

      >> n; 

String  Input  

If you  want  to  read  input  into  a character  array  (a  string),  you  should  declare  the  

character  array  using  array  notation,  with  a length  large  enough  to  hold  the  largest  

string  being  entered.  If you  declare  the  character  array  using  pointer  notation,  you  

must  allocate  storage  to  the  pointer,  for  example  by  using  new  or  malloc.  The  

following  example  shows  a correct  and  an  incorrect  way  of placing  input  in a 

character  array:  

char  goodText[40];  

char*  badText;  

cin  >> goodText;  // works  as long  as input  is less  than  40 chars  

cin  >> badText;   // may  cause  a runtime  error  because  no storage  

                 // is allocated  to  *badText  

In  the  above  example,  the  input  to badText  can  be  made  to  work  by  inserting  the  

following  code  before  the  input:  

badText=new  char[40];  

This  guideline  applies  to input  to  any  pointer-to-type.  Storage  must  be  allocated  to  

the  pointer  before  input  occurs.  

White  Space  in  String  Input  

The  input  operator  uses  white  space  to  delineate  items  in  the  input  stream,  

including  strings.  If you  want  an  entire  line  of input  to  be  read  in  as  a single  

string,  you  should  use  the  getline()  function  of istream:  

// String  input  using  operator  << and  getline()  

#include  <iostream.h>  

int  main(int  argc,  char  *argv[])  { 

   char  text1[100],  text2[100];  

   // prompt  and  get  input  for  text  arrays  

   cout  <<  “Enter  two  words:\n”;  

   cin  >> text1  >> text2;  

   // display  the  text  arrays  

   cout  <<  “<”  << text1  << “>\n”  

        << “<”  << text2  << “>\n”  

        << “Enter  two  lines  of  text:\n”;  

   // ignore  the  next  character  if it is a newline  

   if (cin.peek()==’\n’)  cin.ignore(1,’\n’);  

   // get  a line  of text  into  array  text1  

   cin.getline(text1,  sizeof(text1),  ’\n’);  

 

22 C/C++  Legacy  Classes



// get  a line  of text  into  array  text2  

   cin.getline(text2,  sizeof(text2),  ’\n’);  

   // display  the  text  arrays  

   cout  << “<”  << text1  << “>\n”  

        << “<”  << text2  << “>” << endl;  

   return  0;  

   } 

The  first  argument  of getline()  is a pointer  to the  character  array  in  which  to store  

the  input.  The  second  argument  specifies  the  maximum  number  of  bytes  of input  

to  read  and  the  third  argument  is the  delimiter,  which  the  library  uses  to  

determine  when  the  string  input  is  complete.  If  you  do  not  specify  a delimiter,  the  

default  is the  new-line  character.  

Here  are  two  samples  of  the  input  and  output  from  this  program.  Input  is shown  

in  bold  type,  and  output  is shown  in regular  type:  

Enter  two  words:  

Word1  Word2  

<Word1>  

<Word2>  

Enter  two  lines  of text:  

First  line  of text  

Second  line  of text  

<First  line  of text>  

<Second  line  of text>  

For  the  above  input,  the  program  works  as  expected.  For  the  input  in  the  sample  

below,  the  first  input  statement  reads  two  white-space-delimited  words  from  the  

first  line.  The  check  for  a new-line  character  does  not  find  one  at  the  next  position  

(because  the  next  character  in  the  input  stream  is the  space  following  “happens”),  

so  the  first  getline()  call  reads  in  the  remainder  of  the  first  line  of  input.  The  

second  line  of  input  is read  by  the  second  getline()  call,  and  the  program  ends  

before  any  further  input  can  be  read.  

Enter  two  words:  

What  happens  if I enter  more  words  than  it asks  for?  

<What>  

<happens>  

Enter  two  lines  of text:  

I suppose  it will  skip  over  the  extra  ones  

<if  I enter  more  words  than  it asks  for?>  

<I suppose  it will  skip  over  the extra  ones>  

Incorrect  Input  and  the  Error  State  of  the  Input  Stream  

When  your  program  requests  input  through  the  input  operator  and  the  input  

provided  is  incorrect  or  of  the  wrong  type,  the  error  state  may  be  set  in  the  input  

stream  and  further  input  from  that  input  stream  may  fail.  One  runtime  symptom  

of  such  a failure  is  that  your  program’s  prompts  for  further  input  display  without  

pausing  to  wait  for  the  input.  

Display Output on Standard Output or Standard Error 

The  USL  I/O  Stream  Library  predefines  three  output  streams,  as  well  as the  cin  

input  stream.  The  standard  output  stream  is cout,  and  the  remaining  streams,  cerr  

and  clog,  are  standard  error  streams.  Output  to  cout  goes  to the  C standard  output  

stream,  stdout,  unless  cout  has  been  redirected.  Output  to  cerr  and  clog  goes  to  the  

C standard  error  stream,  stderr,  unless  cerr  or  clog  has  been  redirected.  

 

Chapter  1. USL I/O Streaming 23



cerr  and  clog  are  really  two  streams  that  write  to  the  same  output  device.  The  

difference  between  them  is that  cerr  flushes  its  contents  to  the  output  device  after  

each  output,  while  clog  must  be  explicitly  flushed.  

You can  print  to  one  of the  predefined  output  streams  by  using  the  predefined  

stream’s  name  and  the  output  operator  (operator<<),  followed  by  the  value  to  

print:  

#include  <iostream.h>  

int  main(int  argc,  char*  argv[])  { 

   if (argc==1)  cout  << “Good  day!”  << endl;  

   else  cerr  << “I don’t  know  what  to do with  ” 

             <<  argv[1]  << endl;  

   return  0; 

} 

If you  name  the  compiled  program  myprog,  the  following  inputs  will  produce  the  

following  output  to  standard  output  or  standard  error:  

 Invocation  Output  

myprog  Good  day!  

(to  standard  output)  

myprog  hello  there  I don’t  know  what  to do with  hello  

(to  standard  error)  

  

An  output  operator  must  exist  for  any  type  being  output.  The  USL  I/O  Stream  

Library  defines  output  operators  for  all  C++  built-in  types.  For  types  you  define  

yourself,  you  need  to  provide  your  own  output  operators.  If  you  attempt  to place  

the  contents  of  a variable  into  an  output  stream  and  no  output  operator  is defined  

for  the  type  of that  variable,  the  compiler  displays  an  error  message  with  text  

similar  to  the  following:  

The  call  does  not  match  any parameter  list  for “operator<<”.  

Multiple  Variables  in  an  Output  Statement  

You can  place  a succession  of variables  into  an  output  stream  with  a single  output  

statement,  by  repeating  the  output  operator  (<<)  after  each  output,  and  then  

specifying  the  next  variable  to  output.  You can  combine  variables  of  multiple  types  

in  an  output  statement,  without  having  to specify  the  types  of  those  variables  in 

the  output  statement.  For  example:  

int  i,j,k;  

float  l,m;  

// ...  

cout  << i << j << k << l << m; 

The  above  syntax  provides  identical  results  to  the  following  multiple  output  

statements:  

int  i,j,k;  

float  l,m;  

cout  << i; 

cout  << j; 

cout  << k; 

cout  << l; 

cout  << m; 

If you  want  to  enhance  the  readability  of  your  source  code,  break  the  single  output  

statement  up  with  white  space,  instead  of  separating  it into  multiple  output  

statements:  

 

24 C/C++  Legacy  Classes



int  i,j,k;  

float  l,m;  

cout  << i 

     << j 

     << k 

     << l 

     << m; 

Use  Output  Streams  other  than  cout,  cerr,  and  clog  

You can  use  the  same  techniques  for  output  to other  output  streams  as  for  output  

to  the  predefined  output  streams.  The  only  difference  is  that,  for  other  output  

streams,  your  program  must  define  the  stream.  Assuming  you  have  defined  a 

stream  attached  to  a file  opened  for  output,  and  have  called  that  stream  myout,  

you  can  write  to  that  file  through  its  stream,  by  specifying  the  stream’s  name  

instead  of  cout,  cerr  or  clog:  

// assume  the  output  file  is associated  with  stream  myout  

   int  a,b;  

   myout  << a << b; 

Flush Output Streams with endl and flush 

Output  streams  must  be  flushed  for  their  contents  to  be  written  to  the  output  

device.  Consider  the  following:  

cout  << “This  first  calculation  may take  a very  long  time\n”;  

firstVeryLongCalc();  

cout  << “This  second  calculation  may take  even  longer\n”;  

secondVeryLongCalc();  

cout  << “All  done!”;  

If  the  functions  called  in this  excerpt  do  not  themselves  perform  input  or  output  to  

the  standard  I/O  streams,  the  first  message  will  be  written  to the  cout  buffer  

before  firstVeryLongCalc()  is called.  The  second  message  will  be  written  before  

secondVeryLongCalc()  is called,  but  the  buffer  may  not  be  flushed  (written  out  to  

the  physical  output  device)  until  an  implicit  or  explicit  flush  operation  occurs.  As  a 

result,  the  above  program  displays  its  messages  about  expected  delays  after  the  

delays  have  already  occurred.  If you  want  the  output  to  be  displayed  before  each  

function  call,  you  must  flush  the  output  stream.  

A stream  is  flushed  implicitly  in the  following  situations:  

v   The  predefined  streams  cout  and  clog  are  flushed  when  input  is requested  from  

the  predefined  input  stream  (cin).  

v   The  predefined  stream  cerr  is flushed  after  each  output  operation.  

v   An  output  stream  that  is unit-buffered  is flushed  after  each  output  operation.  A 

unit-buffered  stream  is a stream  that  has  ios::unitbuf  set.  

v   An  output  stream  is flushed  whenever  the  flush()  member  function  is applied  to  

it.  This  includes  cases  where  the  flush  or  endl  manipulators  are  written  to  the  

output  stream.  

v   The  program  terminates.  

The  above  example  can  be  corrected  so  that  output  appears  before  each  calculation  

begins,  as  follows:  

cout  << “This  first  calculation  may take  a very  long  time\n”;  

cout.flush();  

firstVeryLongCalc();  

cout  << “This  second  calculation  may take  even  longer\n”;

 

Chapter  1. USL I/O Streaming 25



cout.flush();  

secondVeryLongCalc();  

cout  << “All  done!”  

cout.flush();  

Placing  endl  or  flush  in  an  Output  Stream  

The  endl  and  flush  manipulators  give  you  a simple  way  to  flush  an  output  stream:  

cout  << “This  first  calculation  may take  a very  long  time”  << endl;  

firstVeryLongCalc();  

cout  << “This  second  calculation  may  take  even  longer”  << endl;  

secondVeryLongCalc();  

cout  << “All  done!”  << flush;  

Placing  the  flush  manipulator  in  an  output  stream  is equivalent  to  calling  flush()  

for  that  output  stream.  When  you  place  endl  in  an  output  stream,  it is equivalent  

to  placing  a new-line  character  in the  stream,  and  then  calling  flush().  

Avoid  using  endl  where  the  new-line  character  is required  but  buffer  flushing  is 

not,  because  endl  has  a much  higher  overhead  than  using  the  new-line  character.  

For  example:  

cout  << “Employee  ID:   ” << emp.id    << endl  

     << “Name:          ” << emp.name  << endl  

     << “Job  Category:  ” << emp.jobc  << endl  

     << “Hire  date:     ” << emp.hire  << endl;  

is not  as  efficient  as:  

cout  <<   “Employee  ID:   ” << emp.id  

     << “\nName:          ” <<  emp.name  

     << “\nJob  Category:  ” << emp.jobc  

     << “\nHire  date:     ” << emp.hire  << endl;  

You can  include  the  new-line  character  as  the  start  of the  character  string  that  

immediately  follows  the  location  where  the  endl  manipulator  would  have  been  

placed,  or  as  a separate  character  enclosed  in  single  quotation  marks:  

cout  << “Salary:        ” << emp.pay         << ’\n’  

     << “Next  raise:    ” <<  emp.elig_raise  << endl;  

Flushing  a stream  generally  involves  a high  overhead.  If  you  are  concerned  about  

performance,  only  flush  a stream  when  necessary.  

Parse Multiple Inputs 

The  USL  I/O  Stream  Library  input  streams  determine  when  to  stop  reading  input  

into  a variable  based  on  the  type  of variable  being  read  and  the  contents  of  the  

stream.  The  easiest  way  to  understand  how  input  is parsed  is to  write  a simple  

program  such  as the  following,  and  run it several  times  with  different  inputs.  

#include  <iostream.h>  

int  main(int  argc,  char  *argv[])  { 

   int  a,b,c;  

   cin  >> a >>  b >> c; 

   cout  <<  “a:  <” << a << “>\n”  

        << “b:  <” << b << “>\n”  

        << “c:  <” << c << ’>’ <<  endl;  

   return  0; 

} 

The  following  table  shows  sample  inputs  and  outputs,  and  explains  the  outputs.  In  

the  “Input”  column,  <\n>  represents  a new-line  character  in the  input  stream.  

 

26 C/C++  Legacy  Classes



Input  Output  Remarks  

123<\n>    No  output.  a has  been  assigned  the  value  123,  

but  the  program  is still  waiting  on input  for  b 

and  c. 

1<\n>  

2<\n>  

3<\n>  

a: <1>  

b: <2>  

c: <3>  

White  space  (in this  case,  new-line  characters)  is 

used  to delimit  different  input  variables.  

1 2 3<\n>  a: <1>  

b: <2>  

c: <3>  

White  space  (in this  case,  spaces)  is used  to 

delimit  different  input  variables.  There  can  be 

any  amount  of white  space  between  inputs.  

123,456,789<\n>  a: <123>  

b: 

<-559038737>  

c: 

<- 559038737>  

Characters  are  read  into  int a up to the  first  

character  that  is not  acceptable  input  for an 

integer  (the  comma).  Characters  are  read  into  int 

b where  input  for a left  off  (the  comma).  Because  

a comma  is not  one  of the  allowable  characters  

for  integer  input,  ios::failbit  is set,  and  all further  

input  fails  until  ios::failbit  is cleared.  

1.2  2.3<\n>  

3.4<\n>  

a: <1>  

b: 

<-559038737>  

c: 

<-559038737>  

As  with  the  previous  example,  characters  are  

read  into  a until  the first  character  is encountered  

that  is not  acceptable  input  for  an integer  (in this  

case,  the period).  The  next  input  of an int causes  

ios::failbit  to be set,  and  so both  it and  the third  

input  result  in errors.
  

Open a File for Input and Read from the File 

Use  the  following  steps  to  open  a file  for  input  and  to read  from  the  file.  

1.   Construct  an  fstream  or  ifstream  object  to  be  associated  with  the  file.  The  file  

can  be  opened  during  construction  of  the  object,  or  later. 

z/OS
   

z/OS  C/C++  provides  overloads  of  the  fstream  and  ifstream  

constructors  and  their  open()  functions,  which  allow  you  to  specify  file  

attributes  such  as  lrecl  and  recfm.  

400
   

ILE  C++  provides  overloads  of the  fstream  and  istream  constructors  

and  their  open  functions,  which  allow  you  to  specify  the  ccsid  of  a file.  

2.   Use  the  name  of the  fstream  or  ifstream  object  and  the  input  operator  or  other  

input  functions  of the  istream  class,  to  read  the  input.  

3.   Close  the  file  by  calling  the  close()  member  function  or  by  implicitly  or  

explicitly  destroying  the  fstream  or  ifstream  object.  

Construct  an  fstream  or  ifstream  Object  for  Input  

You can  open  a file  for  input  in  one  of two  ways:  

v   Construct  an  fstream  or  ifstream  object  for  the  file,  and  call  open()  on  the  object:
      #include  <fstream.h>  

      int  main(int  argc,  char  *argv[])  { 

         fstream  infile1;  

         ifstream  infile2;  

         infile1.open(“myfile.dat”,ios::in);  

         infile2.open(“myfile.dat”);  

         // ...  

      } 

v   Specify  the  file  during  construction,  so  that  open()  is called  automatically:

 

Chapter  1. USL I/O Streaming 27



#include  <fstream.h>  

      int  main(int  argc,  char  *argv[])  { 

         fstream  infile1(“myfile.dat”,ios::in);  

         ifstream  infile2(“myfile.dat”);  

         // ...  

      } 

The  only  difference  between  opening  the  file  as  an  fstream  or  ifstream  object  is 

that,  if you  open  the  file  as  an  fstream  object,  you  must  specify  the  input  mode  

(ios::in).  If you  open  it  as  an  ifstream  object,  it  is implicitly  opened  in  input  mode.  

The  advantage  of  using  ifstream  rather  than  fstream  to  open  an  input  file  is that,  if 

you  attempt  to  apply  the  output  operator  to  an  ifstream  object,  this  error  will  be 

caught  during  compilation.  If  you  attempt  to  apply  the  output  operator  to  an  

fstream  object,  the  error  is not  caught  during  compilation,  and  may  pass  unnoticed  

at  runtime.  

The  advantage  of  using  fstream  rather  than  ifstream  is that  you  can  use  the  same  

object  for  both  input  and  output.  For  example:  

// Using  fstream  to read  from  and write  to a file  

#include  <fstream.h>  

int  main(int  argc,  char  *argv[])  { 

   char  q[40];  

   fstream  myfile(“test.txt”,ios::in);  // open  the  file  for input  

   myfile  >> q;                      // input  from  myfile  into  q 

   myfile.close();                    // close  the file  

   myfile.open(“test.txt”,ios::app);    // reopen  the file  for  output  

   myfile  << q <<  endl;               // output  from  q to  myfile  

   myfile.close();                    // close  the file  

   return  0; 

} 

This  example  opens  the  same  file  first  for  input  and  later  for  output.  It  reads  in  a 

character  string  during  input,  and  writes  that  character  string  to the  end  of  the  

same  file  during  output.  Let’s  assume  that  the  contents  of  the  file  test.txt  before  the  

program  is  run are:  

barbers  often  shave  

In  this  case,  the  file  contains  the  following  after  the  program  is run: 

barbers  often  shave  

barbers  

Note  that  you  can  use  the  same  fstream  object  to  access  different  files  in  sequence.  

In  the  above  example,  myfile.open(“test.txt”,ios::app)  could  have  read  

myfile.open(“test.out”,ios::app)  and  the  program  would  still  have  compiled  and  

run, although  the  end  result  would  be  that  the  first  string  of  test.txt  would  be  

appended  to  test.out  instead  of  to  test.txt  itself.  

Read  Input  from  a File  

The  statement  myfile  >>  a reads  input  into  a from  the  myfile  stream.  Input  from  

an  fstream  or  ifstream  object  resembles  input  from  the  standard  input  stream  cin,  

in  all  respects  except  that  the  input  is a file  rather  than  standard  input,  and  you  

use  the  fstream  object  name  instead  of  cin.  The  two  following  programs  produce  

the  same  output  when  provided  with  a given  set  of  input.  In  the  case  of  stdin.C,  

the  input  comes  from  the  standard  input  device.  In  the  case  of filein.C,  the  input  

comes  from  the  file  file.in:  

 

28 C/C++  Legacy  Classes



stdin.C  filein.C  

#include  <iostream.h>  

  

int  main(int  argc,  char  *argv[])  { 

   int  ia,ib,ic;  

   char  ca[40],cb[40],cc[40];  

   // cin  is predefined  

   cin  >> ia >> ib >> ic 

       >>  ca;  

   cin.getline(cb,sizeof(cb),’\n’);  

   cin  >> cc;  

   // no need  to close  cin 

   cout  << ia << ca 

        << ib << cb 

        << ic << cc << endl;  

   return  0; 

   } 

#include  <fstream.h>  

  

int main(int  argc,  char  *argv[])  { 

   int  ia,ib,ic;  

   char  ca[40],cb[40],cc[40];  

   fstream  myfile(“file.in”,ios::in);  

   myfile  >> ia >> ib >> ic  

          >> ca;  

   myfile.getline(cb,sizeof(cb),’\n’);  

   myfile  >> cc;  

   myfile.close();  

   cout  << ia << ca 

        << ib << cb  

        << ic << cc  << endl;  

   return  0; 

   } 

  

In  both  examples,  the  program  reads  the  following,  in  sequence:  

1.   Three  integers  

2.   A whitespace-delimited  string  

3.   A string  that  is delimited  either  by  a new-line  character  or  by  a maximum  

length  of  39  characters.  

4.   A whitespace-delimited  string.  

When  you  define  an  input  operator  for  a class  type,  this  input  operator  is  available  

both  to  the  predefined  input  stream  cin  and  to  any  input  streams  you  define,  such  

as  myfile  in  the  above  example.  

All  techniques  for  reading  input  from  the  standard  input  stream  can  also  be  used  

to  read  input  from  a file,  providing  your  code  is changed  so  that  the  cin  object  is  

replaced  with  the  name  of the  fstream  object  associated  with  the  input  file.  

Open a File for Output and Write  to the File 

To open  a file  for  output,  use  the  following  steps:  

1.   Declare  an  fstream  or  ofstream  object  to associate  with  the  file,  and  open  it 

either  when  the  object  is constructed,  or  later:  

#include  <fstream.h>  

int  main(int  argc,  char  *argv[])  { 

   fstream  file1(“file1.out”,ios::app);  

   ofstream  file2(“file2.out”);  

   ofstream  file3;  

   file3.open(“file3.out”);  

   return  0; 

} 

You must  specify  one  or  more  open  modes  when  you  open  the  file,  unless  you  

declare  the  object  as  an  ofstream  object.  The  advantage  of  accessing  an  output  

file  as  an  ofstream  object  rather  than  as  an  fstream  object  is that  the  compiler  

can  flag  input  operations  to that  object  as errors.  

z/OS
   

z/OS  C/C++  provides  overloads  of  the  fstream  and  ofstream  

constructors  and  their  open()  functions,  which  allow  you  to  specify  file  

attributes  such  as  lrecl  and  recfm.  

2.   Use  the  output  operator  or  ostream  member  functions  to  perform  output  to the  

file.  

3.   Close  the  file  using  the  close()  member  function  of  fstream.

 

Chapter  1. USL I/O Streaming 29



When  you  define  an  output  operator  for  a class  type,  this  output  operator  is 

available  both  to  the  predefined  output  streams  and  to  any  output  streams  you  

define.  

Combine Input and Output of Different Types  

The  USL  I/O  Stream  Library  overloads  the  input  (>>)  and  output  (<<)  operators  for  

the  built-in  types.  As  a result,  you  can  combine  input  or  output  of  values  with  

different  types  in  a single  statement  without  having  to state  the  type  of  the  values.  

For  example,  you  can  code  an  output  statement  such  as:  

   cout  <<  aFloat  <<  “ ” << aDouble  << “\n”  << aString  << endl;  

without  needing  to  provide  type  or  formatting  information  for  each  output.  

Advanced USL I/O Stream Tasks  

Associate a File with a Standard Input or Output Stream 

The  iostream_withassign  class  lets  you  associate  a stream  object  with  one  of  the  

predefined  streams  cin,  cout,  cerr, and  clog.  You can  do  this,  for  example,  to  write  

programs  that  accept  input  from  a file  if a file  is specified,  or  from  standard  input  

if no  file  is  specified.  

The  following  program  is a simple  filter  that  reads  input  from  a file  into  a 

character  array,  and  writes  the  array  out  to  a second  file.  If only  one  file  is 

specified  on  the  command  line,  the  output  is sent  to  standard  output.  If no  file  is 

specified,  the  input  is taken  from  standard  input.  The  program  uses  the  

iostream_withassign  assignment  operator  to  assign  an  ifstream  or  ofstream  object  

to  one  of  the  predefined  streams.  

//  Generic  I/O  Stream  filter,  invoked  as follows:  

//  filter  [infile  [outfile]  ] 

#include  <iostream.h>  

#include  <fstream.h>  

int  main(int  argc,  char*  argv[])  { 

   ifstream*  infile;  

   ofstream*  outfile;  

   char  inputline[4096];                // used  to read  input  lines  

   int  sinl=sizeof(inputline);          // used  by getline()  function  

   if (argc>1)  {                // if at least  an input  file  was  specified  

      infile  = new  ifstream(argv[1]);   // try  opening  it 

      if (infile->good())               //  if it opens  successfully  

         cin  = *infile;                 // assign  input  file  to cin  

         if (argc>2)  {          // if an output  file  was  also  specified  

            outfile  = new  ofstream(argv[2]);  // try  opening  it 

            if (outfile->good())        // if it  opens  successfully  

               cout  = *outfile;         // assign  output  file  to cout  

            } 

         } 

      cin.getline(inputline,  

      sizeof(inputline),’\n’);          // get  first  line  

      while  (cin.good())  {             //  while  input  is good  

      // 

      // Insert  any  line-by-line  filtering  here  

      // 

      cout  << inputline  << endl;         // write  line  

      cin.getline(inputline,sinl,’\n’);  // get next  line  (sinl  specifies  

      }                                 // max chars  to read)  

      if (argc>1)  {                     //  if input  file  was  used  

         infile->close();                // then  close  it  

         if (argc>2)  {                  //  if output  file  was  used

 

30 C/C++  Legacy  Classes



outfile->close();            // then  close  it 

            } 

         } 

         return  0; 

      } 

You can  use  this  example  as  a starting  point  for  writing  a text  filter  that  scans  a file  

line  by  line,  makes  changes  to  certain  lines,  and  writes  all  lines  to an  output  file.  

Move through a file with filebuf Functions 

In  a program  that  receives  input  from  an  fstream  object  (a  file),  you  can  associate  

the  fstream  object  with  a filebuf  object,  and  then  use  the  filebuf  object  to move  the  

get  or  put  pointer  forward  or  backward  in  the  file.  You can  also  use  filebuf  

member  functions  to  determine  the  length  of the  file.  

To associate  an  fstream  object  with  a filebuf  object,  you  must  first  construct  the  

fstream  object  and  open  it. You then  use  the  rdbuf()  member  function  of the  

fstream  class  to  obtain  the  address  of the  file’s  filebuf  object.  Using  this  filebuf  

object,  you  can  move  through  the  file  or  determine  the  file’s  length,  with  the  

seekpos()  and  seekoff()  functions.  For  example:  

// Using  the  filebuf  class  to move  through  a file  

#include  <fstream.h>    // for use of fstream  classes  

#include  <iostream.h>   // not really  needed  since  fstream  includes  it 

#include  <stdlib.h>     // for  use  of  exit()  function  

int  main(int  argc,  char  *argv[])  { 

   // declare  a streampos  object  to keep  track  of the  position  in filebuf  

   streampos  Position;  

   // declare  a streamoff  object  to set stream  offsets  

   // (for  use  by seekoff  and  seekpos)  

   streamoff  Offset=0;  

   // declare  an fstream  object  and  open  its  file  for  input  

   fstream  InputFile(“algonq.uin”,ios::in);  

   // check  that  input  was  successful,  exit  if  not  

   if (!InputFile)  { 

      cerr  << “Could  not  open  algonq.uin!  Exiting...\n”;  

      exit(-1);  

      } 

   // associate  the  fstream  object  with  a filebuf  pointer  

   filebuf  *InputBuffer=InputFile.rdbuf();  

   // read  the  first  line,  and  display  it 

   char  LineOfFile[128];  

   InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);  

   cout  << LineOfFile  <<  endl;  

   // Now  skip  forward  100  bytes  and  display  another  line  

   Offset=100;  

   Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);  

   InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);  

   cout  << “At  position  ” << Position  << “:\n”  

        << LineOfFile  << endl;  

   // Now  skip  back  50 bytes  and display  another  line  

   Offset=-50;  

   Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);  

   // ios::cur  refers  to  current  position  in buffer  

   InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);  

   cout  << “At  position  ” << Position  << “:\n”  

        << LineOfFile  << endl;  

 

Chapter  1. USL I/O Streaming 31



// Now  go to position  137  and display  to the  end  of its  line  

   Position=137;  

   InputBuffer->seekpos(Position,ios::in);  

   InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);  

   cout  <<  “At  position  ” << Position  << “:\n”  

        << LineOfFile  << endl;  

   // Now  close  the  file  and  end the  program  

   InputFile.close();  

   return  0; 

   } 

If the  file  algonq.uin  contains  the  following  text:  

The  trip  begins  on Round  Lake.  

We proceed  through  a marshy  portage,  

and  soon  find  ourselves  in a river  whose  water  is the  color  of ink.  

A heron  flies  off  in the  distance.  

Frogs  croak  cautiously  alongside  the  canoes.  

We can  feel  the  sun’s  heat  glaring  at us from  grassy  shores.  

the  output  of the  example  program  is:  

The  trip  begins  on Round  Lake.  

At position  131:  

ink.  

At position  86:  

elves  in a river  whose  water  is the  color  of ink.  

At position  137:  

 heron  flies  off  in the  distance.  

Use  Encoded  and  Relative  Byte  Offsets  to  Move  through  a File  

The  following  example  shows  how  you  can  use  both  encoded  and  relative  byte  

offsets  to  move  through  a file.  Note  that  encoded  offsets  are  specific  to  z/OS  

C/C++  and  programs  that  use  them  may  not  be  portable.  

// Example  of using  encoded  and  relative  byte  offsets  

// in seeking  through  a file  

#include  <iomanip.h>  

#include  <fstream.h>  

int  main(int  argc,  char  *argv[])  { 

   fstream     fs(“tseek.data”,  ios::out);   // create  tseek.data  

   filebuf*    fb = fs.rdbuf();  

   streamoff   off[5];  

   int         pos[5]  = {0,  30,  42, 197,  0};  

   for  (int  i = 0, j = 0; i < 200;  ++i)  { 

      if (i == pos[j])  

         off[j++]  = (*fb).seekoff(0L,  ios::cur,  ios::out);  

      fs << setw(4)  << i; 

      if (i % 13 == 0 ||  i % 17 == 0) fs << endl;  

   } 

   fs.close();  

   cout  <<  “Open  the  file  in  text  mode,  reposition  using  encoded\n”  

        << “offsets  obtained  from  previous  calls  to seekoff()”  << endl;  

   fs.open(“tseek.data”,  ios::in);  

   fb = fs.rdbuf();  

   // Exchange  off[2]  and off[3]  so last  seek  will  be backwards  

   off[4]  = off[2];   off[2]  = off[3];   off[3]  = off[4];  

   pos[4]  = pos[2];   pos[2]  = pos[3];   pos[3]  = pos[4];  

   for  (j = 0;  j < 4; ++j)  { 

      (*fb).seekoff(off[j],  ios::beg,  ios::in);  

      fs >> i; 

      cout  << “data  at pos”  << dec  << setfill(’  ’)  << setw(4)  << pos[j]  

           << “ is \”“  <<  setw(4)  <<  i << ”\“ (encoded  offset  was  0x”

 

32 C/C++  Legacy  Classes



<< hex  <<  setfill(’0’)  << setw(8)  << off[h]  << “)”  << endl;  

      if (i !=  pos[j])  return  37 + 10*j;  

   } 

   fs.close();  

   cout.fill(’  ’);  

   cout.setf(ios::dec,  ios::basefield);  

   cout  << “\nOpen  the file  in binary  byteseek  mode,  reposition  using\n”  

        << “byte  offsets  calculated  by  the  user  program”  << endl;  

   fs.open(“tseek.data”,  “byteseek”,  ios::in|ios::binary);  

   fb = fs.rdbuf();  

   for  (j = 0, j < 4; ++j)  { 

      off[j]  = (*fb).seekoff(4*pos[j],  ios::beg,  ios::in);  

      fs >> i;  

      cout  << “data  at pos”  << setw(4)  << pos[j]  << “is \”“ << setw(4)  << i 

           << ”\“ (byte     offset  was  ” <<  setw(10)  <<  off[j]  <<  “)”  << endl;  

      if (i !=  pos[j])  return  77 + 10*j;  

    } 

    return  0; 

} 

Define an Input Operator for a Class Type  

An  input  operator  is predefined  for  all  built-in  C++  types.  If  you  create  a class  

type  and  want  to  read  input  from  a file  or  the  standard  input  device  into  objects  of 

that  class  type,  you  need  to define  an  input  operator  for  that  class’s  type.  You 

define  an  istream  input  operator  that  has  the  class  type  as  its  second  argument.  

For  example:  

myclass.h  

#include  <iostream.h>  

  

class  PhoneNumber  { 

   public:  

      int  AreaCode;  

      int  Exchange;  

      int  Local;  

// Copy  Constructor:  

      PhoneNumber(int  ac,  int  ex, int lc)  : 

         AreaCode(ac),  Exchange(ex),  Local(lc)  {} 

//...  Other  member  functions  

}; 

istream&  operator>>  (istream&  aStream,  PhoneNumber&  aPhoneNum)  { 

   int  tmpAreaCode,  tmpExchange,  tmpLocal;  

   aStream  >>  tmpAreaCode  >> tmpExchange  >> tmpLocal;  

   aPhoneNum=PhoneNumber(tmpAreaCode,  tmpExchange,  tmpLocal);  

   return  aStream;  

   } 

The  input  operator  must  have  the  following  characteristics:  

v   Its  return  type  must  be  a reference  to  an  istream.  

v   Its  first  argument  must  be  a reference  to  an  istream.  This  argument  must  be  used  

as  the  function’s  return  value.  

v   Its  second  argument  must  be  a reference  to the  class  type  for  which  the  operator  

is being  defined.  

You can  define  the  code  performing  the  actual  input  any  way  you  like.  In  the  

above  example,  input  is accomplished  for  the  class  type  by  requesting  input  from  

the  istream  object  for  all  data  members  of  the  class  type,  and  then  invoking  the  

copy  constructor  for  the  class  type.  This  is a typical  format  for  a user-defined  input  

operator.  

 

Chapter  1. USL I/O Streaming 33



Use  the  cin  Stream  in a Class  Input  Operator  

Be  careful  not  to  use  the  cin  stream  as  the  input  stream  when  you  define  an  input  

operator  for  a class  type,  unless  this  is what  you  really  want  to  do.  In the  example  

above,  if the  line  

   aStream  >> tmpAreaCode  >> tmpExchange  >> tmpLocal;  

is rewritten  as:  

   cin  >> tmpAreaCode  >> tmpExchange  >> tmpLocal;  

the  input  operator  functions  identically,  when  you  use  statements  in  your  main  

program  such  as cin  >>  myNumber.  However,  if the  stream  requesting  input  is not  

the  predefined  stream  cin,  then  redefining  an  input  operator  to  read  from  cin  will  

produce  unexpected  results.  Consider  how  the  following  code’s  behavior  changes  

depending  on  whether  cin  or  aStream  is used  as  the  stream  in  the  input  statement  

within  the  input  operator  defined  above:  

#include  <iostream.h>  

#include  <fstream.h>  

#include  “myclass.h”  

int  main(int  argc,  char  *argv[])  { 

   PhoneNumber  addressBook[40];  

   fstream  infile(“address.txt”,ios::in);  

   for  (int  i=0;i<40;i++)  

      infile  >> addressBook[i];  //  does  this  read  from  “address.txt”  

                                //  or from  standard  input?  

   //...  

   } 

In  the  original  example,  the  definition  of  the  input  operator  causes  the  program  to  

read  input  from  the  provided  istream  object  (in  this  case,  the  fstream  object  infile).  

The  input  is therefore  read  from  a file.  In  the  example  that  uses  cin  explicitly  

within  the  input  operator,  the  input  that  is supposedly  coming  from  infile  

according  to  the  input  statement  infile  >>  addressBook[i]  actually  comes  from  the  

predefined  stream  cin.  

Display  Prompts  in  Input  Operator  Code  

You can  display  prompts  for  individual  data  members  of a class  type  within  the  

input  operator  definition  for  that  type.  For  example,  you  could  redefine  the  

PhoneNumber  input  operator  shown  above  as:  

istream&  operator>>  (istream&  aStream,  PhoneNumber&  aPhoneNum)  { 

   int  tmpAreaCode,  tmpExchange,  tmpLocal;  

   cout  <<  “Enter  area  code:  ”; 

   aStream  >> tmpAreaCode;  

   cout  <<  “Enter  exchange:  ”; 

   aStream  >> tmpExchange;  

   cout  <<  “Enter  local:  ”; 

   aStream  >> tmpLocal;  

   aPhoneNum=PhoneNumber(tmpAreaCode,  tmpExchange,  tmpLocal);  

   return  aStream;  

   } 

You may  be  tempted  to do  this  when  you  anticipate  that  the  source  of  all  input  for  

objects  of  a class  will  be  the  standard  input  stream  cin.  Avoid  this  practice  

wherever  possible,  because  a program  using  your  class  may  later  attempt  to read  

input  into  an  object  of  your  class  from  a different  stream  (for  example,  an  fstream  

object  attached  to  a file).  In  such  cases,  the  prompts  are  still  written  to  cout  even  

 

34 C/C++  Legacy  Classes



though  input  from  cin  is not  consumed  by  the  input  operation.  Such  an  interface  

does  not  prevent  programs  from  using  your  class,  but  the  unnecessary  prompts  

may  puzzle  end  users.  

Use  Output  Streams  Other  than  cout,  cerr,  and  clog  

You can  use  the  same  techniques  for  output  to other  output  streams  as  for  output  

to  the  predefined  output  streams.  The  only  difference  is  that,  for  other  output  

streams,  your  program  must  define  the  stream.  Assuming  you  have  defined  a 

stream  attached  to  a file  opened  for  output,  and  have  called  that  stream  myout,  

you  can  write  to  that  file  through  its  stream,  by  specifying  the  stream’s  name  

instead  of  cout,  cerr  or  clog:  

// assume  the  output  file  is associated  with  stream  myout  

   int  a,b;  

   myout  << a << b; 

Define an Output Operator for a Class Type  

An  output  operator  is predefined  for  all  built-in  C++  types.  If you  create  a class  

type  and  want  to  write  output  of  that  class  type  to  a file  or  to  any  of the  

predefined  output  streams,  you  need  to  define  an  output  operator  for  that  class’s  

type.  You define  an  ostream  output  operator  that  has  the  class  type  as  its  second  

argument.  For  example:  

myclass.h  

#include  <iostream.h>  

class  PhoneNumber  { 

   public:  

      int  AreaCode;  

      int  Exchange;  

      int  Local;  

// Copy  Constructor:  

      PhoneNumber(int  ac,  int  ex, int lc)  : 

      AreaCode(ac),  Exchange(ex),  Local(lc)  {} 

//...  Other  member  functions  

}; 

ostream&  operator<<  (ostream&  aStream,  PhoneNumber  aPhoneNum)  { 

   aStream  <<  “(”  << aPhoneNum.AreaCode  << “) ” 

           << aPhoneNum.Exchange  << “-”  

           << aPhoneNum.Local  << ’\n’;  

   return  aStream;  

   } 

The  output  operator  must  have  the  following  characteristics:  

v   Its  return  type  should  be  a reference  to  an  ostream.  

v   Its  first  argument  must  be  a reference  to  an  ostream.  This  argument  must  be  

used  as the  function’s  return  value.  

v   Its  second  argument  must  be  of  the  class  type  for  which  the  operator  is being  

defined.  

You can  define  the  code  performing  the  actual  output  any  way  you  like.  In  the  

above  example,  output  is accomplished  for  the  class  type  by  placing  in  the  output  

stream  all  data  members  of the  class,  along  with  parentheses  around  the  area  code,  

a space  before  the  exchange,  and  a hyphen  between  the  exchange  and  the  local.  

Class  Output  Operators  and  the  Format  State  

You should  consider  checking  the  state  of  applicable  format  flags  for  any  stream  

you  perform  output  to  in  a class  output  operator.  At  the  very  least,  if you  change  

 

Chapter  1. USL I/O Streaming 35



the  format  state  in  your  class  output  operator,  before  your  operator  returns  it  

should  reset  the  format  state  to  what  it was  on  entry  to  the  operator.  For  example,  

if you  design  an  output  operator  to  always  write  floating-point  numbers  at a given  

precision,  you  should  save  the  precision  in a temporary  on  entry  to  your  operator,  

then  change  the  precision  and  do  your  output,  and  reset  the  precision  before  

returning.  

The  ios::x_width  setting  determines  the  field  width  for  output.  Because  

ios::x_width  is reset  after  each  insertion  into  an  output  stream  (including  insertions  

within  class  output  operators  you  define),  you  may  want  to  check  the  setting  of  

ios::x_width  and  duplicate  it for  each  output  your  operator  performs.  Consider  the  

following  example,  in  which  class  Coord_3D  defines  a three-dimensional  

co-ordinate  system.  If the  function  requesting  output  sets  the  stream’s  width  to  a 

given  value  before  the  output  operator  for  Coord_3D  is invoked,  the  output  

operator  applies  that  width  to each  of  the  three  co-ordinates  being  output.  (Note  

that  it lets  the  width  reset  after  the  third  output  so that,  from  the  client  code’s  

perspective,  ios::x_width  is reset  by  the  output  operation,  as  it would  be  for  

built-in  types  such  as  float).  

//Setting  the  output  width  in a class  output  operator  

#include  <iostream.h>  

#include  <iomanip.h>  

class  Coord_3D  { 

   public:  

      double  X,Y,Z;  

      Coord_3D(double  x, double  y, double  z) : X(x),  Y(y),  Z(z)  {} 

      }; 

ostream&  operator  <<  (ostream&  aStream,  Coord_3D  coord)  { 

   int  startingWidth=aStream.width();  

   aStream  << coord.X  

#ifndef  NOSETW  

         << setw(startingWidth)     // set width  again  

#endif  

         << coord.Y  

#ifndef  NOSETW  

         << setw(startingWidth)     // set width  again  

#endif  

         << coord.Z;  

   return  aStream;  

   } 

int  main(int  argc,  char  *argv[])  { 

   Coord_3D  MyCoord(38.162168,1773.59,17293.12);  

   cout  <<  setw(17)  << MyCoord  << ’\n’  

        << setw(11)  << MyCoord  <<  endl;  

   return  0; 

   } 

If you  add  #define  NOSETW  to  prevent  the  two  lines  containing  setw()  in  the  

output  operator  definition  from  being  compiled,  the  program  produces  the  output  

shown  below.  Notice  that  only  the  first  data  member  of  class  Coord_3D  is 

formatted  to  the  desired  width.  

      38.16221773.5917293.1  

38.16221773.5917293.1  

If you  do  not  comment  out  the  lines  containing  setw(),  all  three  data  members  are  

formatted  to  the  desired  width,  as  shown  below:  

      38.1622           1773.59         17293.1  

38.1622     1773.59     17293.1  

 

36 C/C++  Legacy  Classes



Correct Input Stream Errors 

When  an  input  statement  is requesting  input  of one  type,  and  erroneous  input  or  

input  of  another  type  is provided,  the  error  state  of  the  input  stream  is  set  to 

ios::badbit  and  ios::failbit,  and  further  input  operations  may  not  work  properly.  For  

example,  the  following  code  repeatedly  displays  the  text:  Enter  an  integer  value:  if 

the  first  input  provided  is a string  whose  initial  characters  do  not  form  an  integer  

value:  

#include  <iostream.h>  

int  main(int  argc,  char  *argv[])  

   { 

   int  i=-1;  

   while  (i<=0)  

   { 

      cout  << “Enter  a positive  integer:  ” ; 

      cin  >> i; 

   } 

   cout  << “The  value  was  ” << i <<  endl;  

   return  0;  

   } 

This  program  loops  indefinitely,  given  an  input  such  as  ABC12,  because  the  

erroneous  input  causes  the  error  state  to be  set  in  the  stream,  but  does  not  clear  the  

error  state  or  advance  the  get  pointer  in  the  stream  beyond  the  erroneous  

characters.  Each  time  the  input  operator  is called  for  an  int  (as  in  the  while  loop  

above),  the  same  characters  are  read  in.  

To clear  an  input  stream  and  repeat  an  attempt  at input  you  must  add  code  to do  

the  following:  

1.   Clear  the  stream’s  error  state.  

2.   Remove  the  erroneous  characters  from  the  stream.  

3.   Attempt  the  input  again.  

You can  determine  whether  the  stream’s  error  state  has  been  set  in  one  of  the  

following  ways:  

v   By  calling  fail()  for  the  stream  (shown  in  the  example  below)  

v   By  calling  bad(),  eof(),  good(),  or  rdstate().  

v   By  using  the  void* type  conversion  operator  (for  example,  if (cin)).  

v   By  using  the  operator!  operator  (shown  in  the  comment  in  the  example  below)  

You can  clear  the  error  state  by  calling  clear(),  and  you  can  remove  the  erroneous  

characters  using  ignore().  The  example  above  could  be  improved,  using  these  

suggestions,  as  follows:  

#include  <iostream.h>  

int  main(int  argc,  char  *argv[])  { 

   int  i=-1;  

   while  (i==-1)  { 

      cout  << “Enter  an  integer  value:  ”;  

      cin  >> i; 

      while  (cin.fail())  {   // could  also  be “while  (!cin)  {” 

         cin.clear();  

         cin.ignore(1000,’\n’);  

         cerr  << “Please  try  again:  ”; 

         cin  >> i; 

        }

 

Chapter  1. USL I/O Streaming 37



} 

   cout  <<  “The  value  was ” << i << endl;  

   return  0; 

} 

The  ignore()  member  function  with  the  arguments  shown  above  removes  

characters  from  the  input  stream  until  the  total  number  of  characters  removed  

equals  1000,  or  until  the  new-line  character  is encountered,  or  until  EOF  is reached.  

This  example  produces  the  output  shown  below  in regular  type,  given  the  input  

shown  in  bold:  

Enter  an integer  value:  

ABC12  

Please  try  again:  

12ABC  

The  value  was  12 

Note  that,  for  the  second  attempt  at input,  the  error  state  is set  after  the  input  of  

12,  so  the  call  to  cin.fail()  after  the  corrected  input  returns  false.  If another  integer  

input  were  requested  after  the  while  loop  ends,  the  error  state  would  be  set  and  

that  input  would  fail.  

When  you  define  an  input  operator  of  class  type,  you  can  build  error-checking  

code  into  your  definition.  If  you  do  so,  you  do  not  have  to  check  for  error-causing  

input  every  time  you  use  the  input  operator  for  objects  of  your  class  type.  

Consider  the  class  definition  for  the  PhoneNumber  data  type  shown  in  myclass.h,  

and  the  following  input  operator  definition:  

istream&  operator>>  (istream&  aStream,  PhoneNumber&  aPhoneNum)  

   { 

   int  AreaCode,  Exchange,  Local;  

   aStream  >> AreaCode;  

     while  (aStream.fail())  eatNonInts(aStream,AreaCode);  

   aStream  >> Exchange;  

     while  (aStream.fail())  eatNonInts(aStream,Exchange);  

   aStream  >> Local;  

     while  (aStream.fail())  eatNonInts(aStream,Local);  

   aPhoneNum=PhoneNumber(AreaCode,  Exchange,  Local);  

   return  aStream;  

   } 

The  eatNonInts()  function  in  this  example  should  be  defined  to ignore  all  

characters  in  the  input  stream  until  the  next  integer  character  is encountered,  and  

then  to  read  the  next  integer  value  into  the  variable  provided  as  its  second  

argument.  The  function  could  be  defined  as  follows:  

void  eatNonInts(istream&  aStream,  int&  anInt)  

   { 

   char  someChar;  

   aStream.clear();  

   while  (someChar=aStream.peek(),  !isdigit(someChar))  

      aStream.get(someChar);  

   aStream  >> anInt;  

   } 

Now  whenever  input  is requested  for  a PhoneNumber  object  and  the  provided  

input  contains  nonnumeric  data,  this  data  is skipped  over. Note  that  this  is only  a 

primitive  error-handling  mechanism;  if the  input  provided  is 416  555  2p45  instead  

of  416  555  2045,  the  characters  p45  will  be  ignored  and  the  local  is set  to  2 rather  

than  2045.  A more  complete  example  would  check  each  input  for  the  correct  

number  of  digits.  

 

38 C/C++  Legacy  Classes



Manipulate Strings with the strstream Classes 

You can  use  the  strstream  classes  to  perform  formatted  input  and  output  to  arrays  

of  characters  in  memory.  If  you  create  formatted  strings  using  these  classes,  your  

code  will  be  less  error-prone  than  if you  use  the  sprintf()  function  to create  

formatted  arrays  of characters.  

For  new  applications,  you  may  want  to  consider  using  IString  or  IText rather  than  

strstream  to  handle  strings.  These  classes  provides  a much  broader  range  of  

string-handling  capabilities  than  strstream,  including  the  ability  to  use  

mathematical  operators  such  as  + (to  concatenate  two  strings),  = (to  copy  one  

string  to  another),  and  ==  (to  compare  two  strings  for  equality).  

You can  use  the  strstream  classes  to  retrieve  formatted  data  from  strings  and  to  

write  formatted  data  out  to  strings.  This  capability  can  be  useful  in  situations  such  

as  the  following:  

v   Your application  needs  to  send  formatted  data  to an  external  function  that  will  

display,  store,  or  print  the  formatted  data.  In  such  cases,  your  application,  rather  

than  the  external  function,  formats  the  data.  

v   Your application  generates  a sequence  of  formatted  outputs,  and  requires  the  

ability  to  change  earlier  outputs  as  later  outputs  are  determined  and  placed  in 

the  stream,  before  all  outputs  are  sent  to  an  output  device.  

v   Your application  needs  to  parse  the  environment  string  or  another  string  already  

in  memory,  as  if that  string  were  formatted  input.  

You can  read  input  from  an  strstream,  or  write  output  to  it, using  the  same  I/O  

operators  as  for  other  streams.  You can  also  write  a string  to  a stream,  then  read  

that  string  as  a series  of  formatted  inputs.  In  the  following  example,  the  function  

add()  is called  with  a string  argument  containing  representations  of a series  of  

numeric  values.  The  add()  function  writes  this  string  to  a two-way  strstream  object,  

then  reads  double  values  from  that  stream,  and  sums  them,  until  the  stream  is 

empty.  add()  then  writes  the  result  to  an  ostrstream,  and  returns  

OutputStream.str(),  which  is a pointer  to  the  character  string  contained  in  the  

output  stream.  This  character  string  is then  sent  to  cout  by  main().  

// Using  the  strstream  classes  to parse  an argument  list  

  

#include  <strstream.h>  

char*  add(char*);  

int  main(int  argc,  char  *argv[])  

{ 

   cout  << add(“1  27 32.12  518”)  << endl;  

   return  0;  

} 

char*  add(char*  addString)  

{ 

   double  value=0,sum=0;  

   strstream  TwoWayStream;  

   ostrstream  OutputStream;  

   TwoWayStream  << addString  <<  endl;  

   for  (;;)  

   { 

      TwoWayStream  >> value;  

      if (TwoWayStream)  sum+=value;  

      else  break;  

   } 

   OutputStream  << “The  sum is:  ” << sum  << “.”  << ends;  

   return  OutputStream.str();  

} 

 

Chapter  1. USL I/O Streaming 39



This  program  produces  the  following  output:  

The  sum  is:  578.12.  

 

40 C/C++  Legacy  Classes



Chapter  2.  USL  Complex  Mathematics  Library  

The  Complex  Mathematics  Library  provides  you  with  the  facilities  to  manipulate  

complex  numbers  and  to perform  standard  mathematical  operations  on  them.  This  

library  is comprised  of two  classes:  

v   complex  is the  class  that  lets  you  manipulate  complex  numbers  

v   c_exception  is  the  class  that  you  use  to  handle  errors  created  by  the  functions  

and  operations  in  the  complex  class.  

The  Complex  Mathematics  Library  provides  you  with  the  following  functionality:  

v   Mathematical  operators  with  the  same  precedence  as the  corresponding  real  

operators.  With  these  operators,  you  can  code  expressions  on  complex  numbers.  

v   Mathematical,  trigonometric,  magnitude,  and  conversion  functions  as  friend  

functions  of  complex  objects.  

v   Predefined  mathematical  constants.  

v   Input  and  output  operators  for  USL  I/O  Stream  Library  input  and  output:  

Complex  numbers  are  written  to  the  output  stream  in the  format  (real,imag).  

Complex  numbers  are  read  from  the  input  stream  in one  of  two  formats:  

(real,imag)  or  real.  

v   The  c_exception  class  to handle  errors.  You can  also  define  your  own  version  of  

the  error  handling  function.

Review of Complex Numbers 

A complex  number  is made  up  of  two  parts:  a real  part  and  an  imaginary  part.  A  

complex  number  can  be  represented  by  an  ordered  pair  (a,  b),  where  a is the  value  

of  the  real  part  of  the  number  and  b is the  value  of  the  imaginary  part.  If (a,  b)  and  

(c,d)  are  complex  numbers,  then  the  following  statements  are  true: 

v   (a,  b)  + (c,  d) = (a  + c, b + d)  

v   (a,  b)  - (c,  d) =  (a  - c,  b - d)  

v   (a,  b)  * (c,  d) = (ac  - bd,  ad + bc)  

v   (a,  b)  / (c,  d) = ((ac  + bd)  / (c^2  + d^2),  (bc  - ad)  / (c^2  + d^2))  

v   The  conjugate  of  a complex  number  (a,b)  is (a,-b)  

v   The  absolute  value  or magnitude  of a complex  number  (a,b)  is  the  positive  

square  root  of  the  value  a^2  + b^2  

v   The  polar  representation  of  (a,  b) is (r,  theta), where  r is  the  distance  from  the  

origin  to  the  point  (a,  b) in  the  complex  plane,  and  theta  is the  angle  from  the  

real  axis  to  the  vector  (a,  b)  in the  complex  plane.  The  angle  theta  can  be  positive  

or  negative.

Header Files and Constants for the complex and c_exception Classes 

To use  the  complex  or  c_exception  classes,  you  must:  

v   Include  the  following  statement  in  any  file  using  these  classes:  

#include  <complex.h>  

Constants  Defined  in  complex.h  

 

© Copyright  IBM Corp. 1996, 2004 41



The  following  table  lists  the  mathematical  constants  that  the  Complex  Mathematics  

Library  defines.  

 Constant  Name  Description  

M_E  The  constant  e 

M_LOG2E  The  logarithm  of e to the  base  2 

M_LOG10E  The  logarithm  of e to the  base  10  

M_LN2  The  natural  logarithm  of 2 

M_LN10  The  natural  logarithm  of 10  

M_PI  π (pi)  

M_PI_2  π (pi)  divided  by  two  

M_PI_4  π (pi)  divided  by  four  

M_1_PI  1/  π (1/pi)  

M_2_PI  2/  π (2/pi)  

M_2_SQRTPI  2 divided  by the  square  root  of π (pi)  

M_SQRT2  The  square  root  of 2 

M_SQRT1_2  The  square  root  of 1/2
  

Construct complex Objects 

You can  use  the  complex  constructor  to  construct  initialized  or  uninitialized  

complex  objects  or  arrays  of  complex  objects.  The  following  example  shows  

different  ways  of creating  and  initializing  complex  objects:  

   complex  comp1;                   // Initialized  to (0, 0) 

   complex  comp2(3.14);             // Initialized  to (3.14,  0) 

   complex  comp3(3.14,2.72);        // Initialized  to (3.14,  2.72)  

   complex  comparr1[3]={  

      1.0,                          // Initialized  to (1.0,  0) 

      complex(2.0,-2.0),            //                (2.0,  -2.0)  

      3.0                           //                (3.0,  0) 

      }; 

   complex  comparr2[3]={  

      complex(1.0,1.0),             // Initialized  to (1.0,  1.0)  

      2.0,                          // (2.0,  0) 

      complex(3.0,-3.0)             // (3.0,  -3.0)  

      }; 

   complex  comparr3[3]={  

      1.0,                          // Initialized  to (1.0,  0) 

      complex(M_PI_4,M_SQRT2),      // (0.785...,  1.414...)  

      M_SQRT1_2                     // (0.707...,  0) 

      }; 

Mathematical Operators for complex 

The  complex  class  defines  a set  of  mathematical  operators  with  the  same  

precedence  as  the  corresponding  real  operators.  With  the  following  operators,  you  

can  code  expressions  on  complex  numbers:  

v   operator  + (addition)  

v   operator  * (multiplication)  

v   operator  - (negation)  

v   operator  - (subtraction)  

v   operator  / (division)  

v   operator  +=  (assignment)  

 

42 C/C++  Legacy  Classes



v   operator  -=  (assignment)  

v   operator  *=  (assignment)  

v   operator  /=  (assignment)  

v   operator  ==  (equality)  

v   operator  !=  (inequality)  

The  complex  mathematical  assignment  operators  (+=,  -=,  *=,  /=)  do  not  produce  a 

value  that  can  be  used  in  an  expression.  The  following  code,  for  example,  produces  

a compile-time  error:  

   complex  x,  y, z;  // valid  declaration  

   x = (y += z );   // invalid  assignment  causes  

                    // a compile-time  error  

The  equality  and  inequality  operators  test  for  an  exact  equality  between  the  real  

parts  of  two  numbers,  and  between  their  complex  parts.  Because  both  components  

are  double  values,  two  numbers  may  be  “equal”  within  a certain  tolerance,  but  

unequal  as  far  as  these  operators  are  concerned.  If  you  want  an  equality  or  

inequality  operator  that  can  test  for  an  absolute  difference  within  a certain  

tolerance  between  the  two  pairs  of corresponding  components,  you  should  define  

your  own  equality  functions  rather  than  use  the  equality  and  inequality  operators  

of  the  complex  class.  

Use Mathematical Operators for complex 

With  these  operators,  you  can  code  expressions  on  complex  numbers  such  as  the  

expressions  shown  in  the  example  below.  In  the  example,  for  each  complex  scalar  

x,  the  comments  showing  the  results  of  operations  use  xr  to  denote  the  scalar’s  real  

part  and  xi  to  denote  the  scalar’s  imaginary  part.  

   //   Using  the  complex  mathematical  operators  

  

   #include  <complex.h>  

   #include  <iostream.h>  

  

   complex  a,b,c,d,e,f,g;  

  

   int  main(int  argc,  char  *argv[])  

   { 

      cout  << “Enter  six  complex  numbers,  separated  by spaces:\n”;  

      cin  >> b >> c >> d >> e >> f >> g;  

      // assignment,  multiplication,  addition  

      a=b*c+d;  // a=(  (br*cr)-(bi*ci)+dr  , (br*ci)+(bi*cr)+di  ) 

      // division  

      a=b/d;  // a=(  (br*dr)+(bi*di)  / ((br*br)+(bi*bi),  

             //     (bi*dr)-(br*di)  / ((br*br)+(bi*bi)  ) 

      // subtraction  

      a=b-f;  // a=(  (br-fr),  (bi-fi)  ) 

     // equality,  multiplication  assignment  

      if (a==f)  c*=e;  //  same  as c=c*e;  

     // inequality,  addition  assignment  

      if (b!=f)  d+=g;  //  same  as d=d+g;  

      cout  << “Here  are  the seven  numbers  after  calculations:\n”  

           << “a=”  <<  a << ’\n’  

           << “b=”  <<  b << ’\n’  

           << “c=”  <<  c << ’\n’  

           << “d=”  <<  d << ’\n’  

           << “e=”  <<  e << ’\n’

 

Chapter 2. USL Complex  Mathematics  Library 43



<< “f=”  << f << ’\n’  

           << “g=”  << g << endl;  

      return  0; 

   } 

This  example  produces  the  output  shown  below  in regular  type,  given  the  input  

shown  in  bold:  

   Enter  six  complex  numbers,  separated  by spaces:  

   (1.14,2.28)  (2.24,4.48)  (1.17,12.18)  

   (4.4444444,5.12341)  (12,7)  5 

   Here  are  the  seven  numbers  after  calculations:  

   a=(  -10.86,  -4.72)  

   b=(  1.14,  2.28)  

   c=(  2.24,  4.48)  

   d=(  6.17,  12.18)  

   e=(  4.44444,  5.12341)  

   f=(  12,  7) 

   g=(  5, 0) 

Note  that  there  are  no  increment  or  decrement  operators  for  complex  numbers.  

Friend Functions for complex 

The  complex  class  defines  a set  of  mathematical,  trigonometric,  magnitude,  and  

conversion  functions  as friend  functions  of complex  objects.  They  are:  

v   exp  (exponent)  

v   log  (natural  logarithm)  

v   pow  (power)  

v   sqrt  (square  root)  

v   cos  (cosine)  

v   cosh  (hyperbolic  cosine)  

v   sin  (sine)  

v   sinh  (hyperbolic  sine)  

v   abs  (absolute  value  or  magnitude)  

v   norm  (square  of  magnitude)  

v   arg  (polar  angle)  

v   conj  (conjugate)  

v   polar  (polar  to  complex)  

v   real  (real  part)  

v   imag  (imaginary  part)

Use Friend Functions with complex 

The  complex  class  defines  a set  of  mathematical,  trigonometric,  magnitude  and  

conversion  functions  as friend  functions  of complex  objects.  Because  these  

functions  are  friend  functions  rather  than  member  functions,  you  cannot  use  the  

dot  or  arrow  operators.  For  example:  

   complex  a, b, *c;  

  

   a - exp(b);      //correct  - exp()  is  a friend  function  of complex  

   a = b.exp();     //error  - exp()  is not a member  function  of  complex  

   a = c -> exp();  //error  - exp()  is not a member  function  of complex  

Use  Friend  Functions  for  complex  

 

44 C/C++  Legacy  Classes



The  complex  class  defines  four  mathematical  functions  as friend  functions  of 

complex  objects.  

v   exp  - Exponent  

v   log  - Logarithm  

v   pow  - Power  

v   sqrt  - Square  Root  

The  following  example  shows  uses  of  these  mathematical  functions:  

   // Using  the  complex  mathematical  functions  

   #include  <complex.h>  

   #include  <iostream.h>  

   int  main(int  argc,  char  *argv[])  

   { 

      complex  a, b; 

      int  i; 

      double  f; 

      // 

      // prompt  the  user  for  an argument  for calls  to 

      // exp(),  log(),  and sqrt()  

      // 

      cout  << “Enter  a complex  value\n”;  

      cin  >> a; 

      cout  << “The  value  of exp()  for  ” << a << “ is:  ” << exp(a)  

          << “\nThe  natural  logarithm  of ” << a << “ is:  ” << log(a)  

          << “\nThe  square  root  of ” << a << “ is:  ” << sqrt(a)  << “\n\n”;  

      // 

      // prompt  the  user  for  arguments  for  calls  to  pow()  

      // 

      cout  << “Enter  2 complex  values  (a  and b),  an integer  (i),”  

           << “ and  a floating  point  value  (f)\n”;  

      cin  >> a >> b >> i >> f; 

      cout  << “a is ” << a << “, b is  ” << b << “, i is ” << i 

           << “, f is ” << f << ’\n’  

           << “The  value  of f**a  is: ” << pow(f,  a) << ’\n’  

           << “The  value  of a**i  is: ” << pow(a,  i) << ’\n’  

           << “The  value  of a**f  is: ” << pow(a,  f) << ’\n’  

           << “The  value  of a**b  is: ” << pow(a,  b) << endl;  

      return  0; 

      } 

This  example  produces  the  output  shown  below  in  regular  type,  given  the  input  

shown  in  bold:  

   Enter  a complex  value  

   (3.7,4.2)  

   The  value  of exp()  for  ( 3.7,  4.2)   is:  ( -19.8297,  -35.2529)  

   The  natural  logarithm  of ( 3.7,  4.2)  is:  ( 1.72229,  0.848605)  

   The  square  root  of ( 3.7,  4.2)  is: ( 2.15608,  0.973992)  

   Enter  2 complex  values  (a and  b),  an integer  (i),  and a floating  point  value  (f)  

   (2.6,9.39)  (3.16,1.16)  -7 33.16237  

   a is ( 2.6,  9.39),  b is ( 3.16,  1.16),  i is -7, f is 33.1624  

   The  value  of f**a  is:  ( 972.681,  8935.53)  

   The  value  of a**i  is:  ( -1.13873e-07,  -3.77441e-08)  

   The  value  of a**f  is:  ( 4.05451e+32,  -4.60496e+32)  

   The  value  of a**b  is:  ( 262.846,  132.782)  

Use  Trigonometric  Functions  for  complex  

The  complex  class  defines  four  trigonometric  functions  as friend  functions  of 

complex  objects.  

v   cos  - Cosine  

 

Chapter 2. USL Complex  Mathematics  Library 45



v   cosh  - Hyperbolic  cosine  

v   sin  - Sine  

v   sinh  - Hyperbolic  sine  

The  following  example  shows  how  you  can  use  some  of the  complex  trigonometric  

functions:  

   // Complex  Mathematics  Library  trigonometric  functions  

   #include  <complex.h>  

   #include  <iostream.h>  

   int  main(int  argc,  char  *argv[])  

   { 

      complex  a = (M_PI,  M_PI_2);  // a = (pi,pi/2)  

      // display  the  values  of cos(),  cosh(),  sin(),  and  sinh()  

      // for  (pi,pi/2)  

      cout  << “The  value  of cos()  for  (pi,pi/2)  is:  ” << cos(a)  << ’\n’  

           << “The  value  of cosh()  for (pi,pi/2)  is: ” << cosh(a)  << ’\n’  

           << “The  value  of sin()  for  (pi,pi/2)  is:  ” << sin(a)  << ’\n’  

           << “The  value  of sinh()  for (pi,pi/2)  is: ” << sinh(a)  << endl;  

   return  0; 

   } 

This  program  produces  the  following  output:  

   The  value  of cos()   for (pi,pi/2)  is: ( 6.12323e-17,  0) 

   The  value  of cosh()  for  (pi,pi/2)  is: ( 2.50918,  0) 

   The  value  of sin()   for (pi,pi/2)  is: ( 1, -0) 

   The  value  of sinh()  for  (pi,pi/2)  is: ( 2.3013,  0) 

Use  Magnitude  Functions  for  complex  

The  magnitude  functions  for  complex  are:  

v   abs  - Absolute  value  

v   norm  - Square  magnitude  

Use  Conversion  Functions  for  complex  

The  conversion  functions  in  the  Complex  Mathematics  Library  allow  you  to 

convert  between  the  polar  and  standard  complex  representations  of  a value  and  to 

extract  the  real  and  imaginary  parts  of  a complex  value.  

The  complex  class  provides  the  following  conversion  functions  as  friend  functions  

of  complex  objects:  

v   arg  - angle  in  radians  

v   conj  - conjugation  

v   polar  - polar  to  complex  

v   real  -extract  to  real  part  

v   imag  - extract  imaginary  part  

The  following  program  shows  how  to use  complex  conversion  functions:  

   // Using  the  complex  conversion  functions  

   #include  <complex.h>  

   #include  <iostream.h>  

   int  main(int  argc,  char  *argv[])  

   { 

      complex  a; 

 

46 C/C++  Legacy  Classes



//for  a value  supplied  by the  user,  display  the  real  part,  

      //the  imaginary  part,  and  the  polar  representation.  

      cout  << “Enter  a complex  value”  <<  endl;  

      cin  >> a; 

      cout  << “The  real  part  of this  value  is ” << real(a)  << endl;  

      cout  << “The  imaginary  part  of this  value  is ” << imag(a)  << endl;  

      cout  << “The  polar  representation  of this  value  is ” 

           << “( ” <<abs(a)  << “,”  << arg(a)  << “)” <<endl;  

      return  0; 

   } 

This  example  produces  the  output  shown  below,  given  the  input  shown  in  bold:  

   Enter  a complex  value  

   (175,162)  

   The  real  part  of  this  value  is 175 

   The  imaginary  part  of  this  value  is 162  

   The  polar  representation  of this  value  is (238.472,0.746842)  

Input and Output Operators for complex 

The  complex  class  defines  input  and  output  operators  for  USL  I/O  Stream  Library:  

v   operator  >>  (input)  

v   operator  <<  (output)

Complex  numbers  are  written  to  the  output  stream  in  the  format  (real,imag).  

Complex  numbers  are  read  from  the  input  stream  in  one  of  two  formats:  

(real,imag)  or  real.  

Use complex Input and Output Operators 

The  following  example  demonstrates  the  use  of  complex  input  and  output  

operators:  

// An example  of complex  input  and output  

  

#include  <complex.h>   // required  for use of Complex  Mathematics  Library  

#include  <iostream.h>  // required  for use  of I/O Stream  input  and output  

  

int  main(int  argc,  char  *argv[])  { 

  complex  a [3]={1.0,2.0,complex(3.0,-3.0)};  

  complex  b [3];  

  complex  c [3];  

  complex  d; 

  

  //  read  input  for  all  of arrays  b and c 

  //  (you  must  specify  each  element  individually)  

  

  cout  << “Enter  three  complex  values  separated  by spaces:”  << endl;  

  cin  >> b[0]  >> b[1]  >> b[2];  

  cout  << “Enter  three  more  complex  values:”  << endl;  

  cin  >> c[2]  >> c[0]  >> c[1];  

  

  //  read  input  for  scalar  d 

  cout  << “Enter  one  more  complex  value:”  << endl;  

  cin  >> d; 

  

  //  Note  that  you  cannot  use  the  above  notation  for  arrays.  

  //  For  example,  cin  >>  a; is incorrect  because  a is a complex  array.  

  //  Display  each  array  of three  complex  numbers,  then  the  complex  scalar  

  

  cout  << “Here  are  some  elements  of  arrays  a,b,and  c:\n”  

       << a[2]  << endl

 

Chapter 2. USL Complex  Mathematics  Library 47



<< b[0]  << b[1]  << b[2]  << endl  

       << c[1]  << endl  

       << “Here  is scalar  d: ” 

       << d << endl  

  

       // cout  << a produces  an address,  not  a list  of array  elements:  

       << “Here  is the  address  of  array  a:” << endl  

       << a 

       << endl;  //endl  flushes  the  output  stream  

  return  0; 

} 

This  example  produces  the  output  shown  below  in regular  type,  given  the  input  

shown  in  bold.  Notice  that  you  can  insert  white  space  within  a complex  number,  

between  the  brackets,  numbers,  and  comma.  However,  you  cannot  insert  white  

space  within  the  real  or  imaginary  part  of  the  number.  The  address  displayed  may  

be  different,  or  in a different  format,  than  the  address  shown,  depending  on  the  

operating  system,  hardware,  and  other  factors:  

Enter  three  complex  values  separated  by spaces:  

38 (12.2,3.14159)  (1712,-33)  

Enter  three  more  complex  values:  

(     17.1234   ,  1234.17)  ( 27,      12) (-33     ,0)  

Enter  one  more  complex  value:  

17 

Here  are  some  elements  of arrays  a,b,and  c: 

( 3, -3)  

( 38,  0)(  12.2,  3.14159)(  1712,  -33)  

( -33,  0) 

Here  is scalar  d:(  17,  0) 

Here  is the  address  of array  a: 

0x2ff21cc0  

Error Functions 

There  are  three  recommended  methods  to  handle  complex  mathematics  errors:  

v   use  the  c_exception  class  

v   define  a customized  complex_error  function  

v   handle  errors  outside  of  the  complex  mathematics  library  

Using  the  c_exception  Class  

The  c_exception  class  lets  you  handle  errors  that  are  created  by  the  functions  and  

operations  in  the  complex  class.  When  the  Complex  Mathematics  Library  detects  

an  error  in  a complex  operation  or  function,  it invokes  complex_error().  This  friend  

function  of  c_exception  has  a c_exception  object  as  its  argument.  When  the  

function  is  invoked,  the  c_exception  object  contains  data  members  that  define  the  

function  name,  arguments,  and  return  value  of the  function  that  caused  the  error,  

as  well  as the  type  of error  that  has  occurred.  If you  do  not  define  your  own  

complex_error  function,  complex_error  sets  the  complex  return  value  and  the  errno  

error  number.  

Defining  a Customized  complex_error  Function  

You can  either  use  the  default  version  of complex_error()  or  define  your  own  

version  of  the  function.  If  you  define  your  own  complex_error()  function,  and  this  

function  returns  a nonzero  value,  no  error  message  will  be  generated.  

Handling  Errors  Outside  of  the  Complex  Mathematics  Library  

 

48 C/C++  Legacy  Classes



There  are  some  cases  where  member  functions  of  the  Complex  Mathematics  

Library  call  functions  in  the  math  library.  These  calls  can  cause  underflow  and  

overflow  conditions  that  are  handled  by  the  matherr()  function  that  is  declared  in 

the  math.h  header  file.  For  example,  the  overflow  conditions  that  are  caused  by the  

following  calls  are  handled  by  matherr():  

v   exp(complex(DBL_MAX,  DBL_MAX))  

v   pow(complex(DBL_MAX,  DBL_MAX),  INT_MAX)  

v   norm(complex(DBL_MAX,  DBL_MAX))  

DBL_MAX  is  the  maximum  valid  double  value,  and  is defined  in  float.h.  

INT_MAX  is the  maximum  int  value,  and  is defined  in limits.h.  

If  you  do  not  want  the  default  error-handling  defined  by  matherr(),  you  should  

define  your  own  version  of matherr().  

Handle complex Mathematics Errors 

You can  use  one  of the  following  methods  to  handle  complex  mathematics  errors:  

v   use  the  c_exception  class  

v   

z/OS
   

AIX
   

define  a customized  complex_error  function  

v   

z/OS
   

AIX
   

compile  a program  that  uses  a customized  complex_error  

function  

Use  c_exception  to  Handle  complex  Mathematics  Errors  

The  c_exception  class  is not  related  to  the  C++  exception  handling  mechanism  that  

uses  the  try,  catch,  and  throw  statements.  

The  c_exception  class  lets  you  handle  errors  that  are  created  by  the  functions  and  

operations  in  the  complex  class.  When  the  Complex  Mathematics  Library  detects  

an  error  in  a complex  operation  or  function,  it invokes  complex_error().  This  friend  

function  of  c_exception  has  a c_exception  object  as  its  argument.  When  the  

function  is  invoked,  the  c_exception  object  contains  data  members  that  define  the  

function  name,  arguments,  and  return  value  of the  function  that  caused  the  error, 

as  well  as  the  type  of error  that  has  occurred.  The  data  members  are  as follows:  

   complex  arg1;    // First  argument  of the 

                   //    error-causing  function  

   complex  arg2;    // Second  argument  of the 

                   //    error-causing  function  

   char*  name;      // Name  of the error-causing  function  

   complex  retval;  // Value  returned  by default  

                   //    definition  of complex_error  

   int  type;        // The type  of error  that  has  occurred.  

If  you  do  not  define  your  own  complex_error  function,  complex_error  sets  the  

complex  return  value  and  the  errno  error  number.  

z/OS
   

AIX
   

Define  a Customized  complex_error  Function  

You can  either  use  the  default  version  of  complex_error()  or  define  your  own  

version  of  the  function.  When  defining  your  own  version  of  the  complex_error()  

function,  you  must  link  your  application  to  the  static  version  of the  complex  

library.  

In  the  following  example,  complex_error()  is redefined:  

 

Chapter 2. USL Complex  Mathematics  Library 49



// Redefinition  of the complex_error  function  

   #include  <iostream.h>  

   #include  <complex.h>  

   #include  <float.h>  

   int  complex_error(c_exception  &c)  

   { 

      cout  << “================”  << endl;  

      cout  << “   Exception  ” << endl;  

      cout  << “type  = ” << c.type  << endl;  

      cout  << “name  = ” << c.name  << endl;  

      cout  << “arg1  = ” << c.arg1  << endl;  

      cout  << “arg2  = ” << c.arg2  << endl;  

      cout  << “retval  = ” << c.retval  << endl;  

      cout  << “================”  << endl;  

      return  0; 

    } 

   int  main(int  argc,  char  *argv[])  

   { 

      complex  c1(DBL_MAX,0);  

      complex  result;  

      result  = exp(c1);  

      cout  << “exp”  << c1 << “= ” << result  << endl;  

      return  0; 

   } 

This  example  produces  the  following  output:  

   ================  

      Exception  

   type  = 3 

   name  = exp  

   arg1  = ( 1.79769e+308,  0) 

   arg2  = ( 0, 0) 

   retval  = ( infinity,  -infinity)  

   ================  

   exp(  1.79769e+308,  0)=  ( infinity,  -infinity)  

If the  redefinition  of  complex_error()  in  the  above  code  is commented  out,  the  

default  definition  of complex_error()  is  used,  and  the  program  produces  the  

following  output:  

   exp(  7.23701e+75,  0) = ( 7.23701e+75,  -7.23701e+75)  

z/OS
   

AIX
   

Compile  a Program  that  Uses  a Customized  complex_error  

Function  

If you  define  your  own  version  of complex_error,  you  must  ensure  that  the  name  

of  the  header  file  that  contains  your  version  of  the  complex_error  is included  in 

your  source  file  when  you  compile  you  program.  

Example: Calculate Roots 

The  following  example  shows  how  you  can  use  the  complex  Mathematics  Library  

to  calculate  the  roots  of  a complex  number.  For  every  positive  integer  n, each  

complex  number  z has  exactly  n distinct  nth  roots.  Suppose  that  in  the  complex  

plane  the  angle  between  the  real  axis  and  point  z is theta, and  the  distance  between  

the  origin  and  the  point  z is r.  Then  z has  the  polar  form  (r,  theta), and  the  n roots  

of  z have  the  values:  

sigma  

sigma  x omega  

sigma  x omega^2 

sigma  x omega^3

 

50 C/C++  Legacy  Classes



. 

. 

. 

sigma  x omega^(n - 1)  

where  omega  is  a complex  number  with  the  value:  

omega  = (cos(2pi / n),  sin(2pi / n)) 

and  sigma  is a complex  number  with  the  value:  

sigma  = r^(1/n) (cos(theta / n),  sin(theta / n))  

The  following  code  includes  two  functions,  get_omega()  and  get_sigma(), to  

calculate  the  values  of  omega  and  sigma. The  user  is prompted  for  the  complex  

value  z and  the  value  of  n. After  the  values  of omega  and  sigma  have  been  

calculated,  the  n roots  of  z are  calculated  and  printed.  

   // Calculating  the  roots  of  a complex  number  

  

   #include  <iostream.h>  

   #include  <complex.h>  

   #include  <math.h>  

   // Function  to calculate  the  value  of omega  for  a given  value  of n 

   complex  get_omega(double  n) 

   { 

      complex  omega  = complex(cos((2.0*M_PI)/n),  sin((2.0*M_PI)/n));  

      return  omega;  

   } 

   // function  to calculate  the  value  of sigma  for  a given  value  of 

   // n and  a given  complex  value  

  

   complex  get_sigma(complex  comp_val,  double  n) 

   { 

      double  rn,  r, theta;  

      complex  sigma;  

      r = abs(comp_val);  

      theta  = arg(comp_val);  

      rn = pow(r,(1.0/n));  

      sigma  = rn * complex(cos(theta/n),sin(theta/n));  

      return  sigma;  

   } 

   int  main(int  argc,  char  *argv[])  

   { 

      double  n; 

      complex  input,  omega,  sigma;  

      // 

      // prompt  the  user  for  a complex  number  

      // 

      cout  << “Please  enter  a complex  number:  ”; 

      cin  >> input;  

      // 

      // prompt  the  user  for  the  value  of n 

      // 

      cout  << “What  root  would  you  like  of this  number?  ”; 

      cin  >> n; 

      // 

      // calculate  the  value  of omega  

      // 

      omega  = get_omega(n);  

      cout  << “Here  is omega  ” << omega  << endl;  

      // 

      // calculate  the  value  of sigma  

      // 

      sigma  = get_sigma(input,n);

 

Chapter 2. USL Complex  Mathematics  Library 51



cout  << “Here  is sigma  ” <<  sigma  << ’\n’  

           << “Here  are  the ” << n << “ roots  of ” << input  << endl;  

      for  (int  i = 0; i < n ; i++)  

   { 

         cout  << sigma*(pow(omega,i))  << endl;  

   } 

   return  0 

} 

This  example  produces  the  output  shown  below  in regular  type,  given  the  input  

shown  in  bold:  

   Please  enter  a complex  number:  (-7,  24) 

   What  root  would  you  like  of this  number?  2 

   Here  is  omega  ( -1,  1.22465e-16)  

   Here  is  sigma  ( 3, 4) 

   Here  are  the  2 roots  of ( -7, 24) 

   ( 3, 4) 

   ( -3,  -4)  

Example: Use Equality and Inequality Operators 

The  functions  is_equal  and  is_not_equal  in  the  following  example  provide  a 

reliable  comparison  between  two  complex  values:  

   // Testing  complex  values  for equality  within  a certain  tolerance  

   #include  <complex.h>  

   #include  <iostream.h>             //  for output  

   #include  <iomanip.h>              // for use of setw()  manipulator  

   int  is_equal(const  complex  &a, const  complex  &b, 

                const  double  tol=0.0001)  

   { 

      return  (abs(real(a)  - real(b))  < tol  && 

              abs(imag(a)  - imag(b))  < tol);  

   } 

   int  is_not_equal(const  complex  &a,  const  complex  &b,  

                    const  double  tol=0.0001)  

   { 

      return  !is_equal(a,  b,  tol);  

   } 

   int  main(int  argc,  char  *argv[])  

   { 

       complex  c[4]  = { complex(1.0,  2.0),  

                       complex(1.0,  2.0),  

                       complex(3.0,  4.0),  

                       complex(1.0000163,1.999903581)};  

      cout  << “Comparison  of array  elements  c[0]  to c[3]\n”  

           << “==  means  identical,\n!=  means  unequal,\n”  

           << “ ~ means  equal  within  tolerance  of 0.0001.\n\n”  

           << setw(10)  << “Element”  

           << setw(6)  << 0 

           << setw(6)  << 1 

           << setw(6)  << 2 

           << setw(6)  << 3 

           << endl;  

      for  (int  i=0;i<4;i++)  { 

         cout  << setw(10)  << i; 

         for  (int  j=0;j<4;j++)  { 

            if (c[i]==c[j])  cout  << setw(6)  << “==”;  

            else  if (is_equal(c[i],c[j]))  cout  << setw(6)  << “~”;  

                else  if (is_not_equal(c[i],c[j]))  cout  << setw(6)  << “!=”;  

               else  cout  << setw(6)  << “???”;  

            }

 

52 C/C++  Legacy  Classes



cout  << endl;  

         } 

      return  0 

      } 

This  example  produces  the  following  output:  

   Comparison  of  array  elements  c[0]  to c[3]  

   == means  identical,  

   != means  unequal,  

    ~ means  equal  within  tolerance  of 0.0001.  

  

      Element      0     1     2     3 

            0    ==    ==    !=     ~ 

            1    ==    ==    !=     ~ 

            2    !=    !=    ==    != 

            3     ~     ~    !=    ==  

 

Chapter 2. USL Complex  Mathematics  Library 53



54 C/C++  Legacy  Classes



Chapter  3.  Reference  

_CCSID_T 

400
   

This  class  is specific  to  the  OS/400  implementation.  Its  use  will  lead  to  

nonportable  code.  

The  C++  Standard  Library  and  the  USL  Library  use  this  class  to  pass  Coded  

Character  Set  ID  (CCSID)  information  to the  streaming  functions.  There  are  two  

identical  versions  of  this  class,  one  for  the  C++  Standard  Library  in  the  std  

namespace  and  the  other  for  the  USL  Library  in  the  global  namespace.  

Class  header  file:  fstream.h  

_CCSID_T - Hierarchy List 

   _CCSID_T

_CCSID_T - Member Functions and Data by Group 

Constructors & Destructor 

_CCSID_T  

public:_CCSID_T(int  ii)  

This  is  supported  on  

400
   

 Constructs  an  object  of  this  class.  The  int  parameter  represents  an  OS/400  

numeric  CCSID.

Query Functions 

value  

public:int  value()  const  

This  is  supported  on  

400
   

 Returns  the  OS/400  numeric  Coded  Character  Set  IDentifier  (CCSID).

_CCSID_T - Inherited Member Functions and Data 

Inherited  Public  Functions  

 None  

Inherited  Public  Data  

 None  

Inherited  Protected  Functions  

 None  

Inherited  Protected  Data  

 None

complex 

This  class  provides  you  with  facilities  to manipulate  complex  numbers.  

 

© Copyright  IBM Corp. 1996, 2004 55



A  complex  number  is made  up  of two  parts:  a real  part  and  an  imaginary  part.  A  

complex  number  can  be  represented  by  an  ordered  pair  (a,  b),  where  a is the  value  

of  the  real  part  of  the  number  and  b  is the  value  of  the  imaginary  part.  

Class  header  file:  complex.h  

complex - Hierarchy List 

   complex

complex - Member Functions and Data by Group 

Constructors & Destructor 

These  constructors  can  be  used  to  create  complex  objects.  

There  is  no  explicit  complex  destructor.  

Arrays  of  Complex  Numbers  

You can  use  the  complex  constructor  to  initialize  arrays  of complex  numbers.  If the  

list  of  initial  values  is made  up  of complex  values,  each  array  element  is initialized  

to  the  corresponding  value  in  the  list  of  initial  vlaues.  If the  list  of  initial  values  is 

not  made  up  of complex  values,  the  real  parts  of  the  array  elements  are  initialized  

to  these  initial  values  and  the  imaginary  parts  of  the  array  elements  are  initialized  

to  0.  

In  the  following  example,  the  elements  of array  b are  initialized  to  the  values  in 

the  initial  value  list,  but  only  the  real  parts  of  elements  of  array  a are  initialized  to 

the  values  in  the  initial  value  list.  

   #include  < complex.h  > 

  

   int  main()  

   { 

      complex  a[3]  = {1.0,  2.0,  3.0};  

      complex  b[3]  = {complex(1.0,  1.0),  complex(2.0,  2.0),  complex(3.0,  3.0)};  

  

      cout  <<  "Here  is  the  first  element  of a:  " << a[0]  <<  endl;  

      cout  <<  "Here  is  the  first  element  of b:  " << b[0]  <<  endl;  

   } 

This  example  produces  the  following  output:  

   Here  is  the  first  element  of a:  ( 1, 0) 

   Here  is  the  first  element  of b:  ( 1, 1) 

complex  

 Constructs  a complex  number.  

Overload  1  

public:complex(double  r, double  i = 0.0)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a complex  number.  

 The  first  argument,  r,  is assigned  to  the  real  part  of  the  complex  

number.  If you  specify  a second  argument,  it  is assigned  to  the  

imaginary  part  of  the  complex  number.  If the  second  parameter  is  

not  specified,  the  imaginary  part  is initialized  to  0. 

 

56 C/C++  Legacy  Classes



Overload  2 

public:complex()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a complex  number  . The  real  and  imaginary  parts  of the  

complex  number  are  initialized  to  (0,  0).

Assignment Operators 

The  assignment  operators  do  not  produce  a value  that  can  be  used  in  an  

expression.  The  following  code,  for  example,  produces  a compile-time  error:  

   complex  x,  y, z;    // valid  declaration  

  

   x = (y += z);       // invalid  assignment  causes  a compile-time  error  

  

   y += z;         // correct  method  involves  splitting  expression  

   x = y;         // into  separate  statements.  

operator  *=  

 Assigns  the  value  of x  * y to  x. 

Overload  1  

public:void  operator  *=(const  complex&)  

This  is  supported  on  

AIX
   

Overload  2 

public:inline  void  operator  *=(complex)  

This  is  supported  on  

400
   

z/OS
  

operator  +=  

 Assigns  the  value  of x  + y to x. 

Overload  1  

public:inline  void  operator  +=(complex)  

This  is  supported  on  

400
   

z/OS
   

Overload  2 

public:inline  void  operator  +=(const  complex&)  

This  is  supported  on  

AIX
  

operator  -=  

 Assigns  the  value  of x  - y to  x. 

Overload  1  

public:inline  void  operator  -=(complex)  

This  is  supported  on  

400
   

z/OS
   

Overload  2 

public:inline  void  operator  -=(const  complex&)  

This  is  supported  on  

AIX
  

operator  /=  

 Assigns  the  value  of x  / y to x. 

Overload  1  

public:inline  void  operator  /=(complex)  

This  is  supported  on  

400
   

z/OS
   

 

Chapter  3. Reference 57



Overload  2 

public:void  operator  /=(const  complex&)  

This  is supported  on  

AIX
  

Internal Functions 

These  functions  are  internal  to  the  complex  class  and  should  not  be  used  by  

application  programs.  

hexdiveq  

public:void  hexdiveq(complex)  

This  is supported  on  

z/OS
   

 An  internal  function  called  by  operator/=  when  the  application  uses  

hexadecimal  floating  point  and  double  values.  

hexmuteq  

public:void  hexmuteq(complex)  

This  is supported  on  

z/OS
   

 An  internal  function  called  by  operator*=  when  the  application  uses  

hexadecimal  floating  point  and  double  values.  

ieeediveq  

public:void  ieeediveq(complex)  

This  is supported  on  

z/OS
   

 An  internal  function  called  by  operator/=  when  the  application  uses  IEEE  

floating  point  and  double  values.  

ieeemuteq  

public:void  ieeemuteq(complex)  

This  is supported  on  

z/OS
   

 An  internal  function  called  by  operator*=  when  the  application  uses  IEEE  

floating  point  and  double  values.

complex - Associated Globals 

abs  

double  abs(complex)  

Returns  the  absolute  value  or  magnitude  of its  argument.  The  absolute  

value  of  a complex  value  (a,  b)  is  the  positive  square  root  of a2 + b2. 

 This  is supported  on  

400
   

z/OS
   

abs  

double  abs(const  complex&)  

Returns  the  absolute  value  or  magnitude  of its  argument.  The  absolute  

value  of  a complex  value  (a,  b)  is  the  positive  square  root  of a2 + b2. 

 This  is supported  on  

AIX
   

arg  

double  arg(complex)  

 

58 C/C++  Legacy  Classes



Returns  the  angle  (in  radians)  of the  polar  representation  of  its  argument.  

If  the  argument  is equal  to the  complex  number  (a,  b),  the  angle  returned  

is the  angle  in  radians  on  the  complex  plane  between  the  real  axis  and  the  

vector  (a,  b).  The  return  value  has  a range  of  -pi  to pi.  

 This  is  supported  on  

400
   

z/OS
   

arg  

double  arg(const  complex&)  

Returns  the  angle  (in  radians)  of the  polar  representation  of  its  argument.  

If  the  argument  is equal  to the  complex  number  (a,  b),  the  angle  returned  

is the  angle  in  radians  on  the  complex  plane  between  the  real  axis  and  the  

vector  (a,  b).  The  return  value  has  a range  of  -pi  to pi.  

 This  is  supported  on  

AIX
   

conj  

complex  conj(complex)  

Returns  the  complex  value  equal  to (a,  -b)  if the  input  argument  is equal  to  

(a,  b).  

 This  is  supported  on  

400
   

z/OS
   

conj  

inline  complex  conj(const  complex&)  

Returns  the  complex  value  equal  to (a,  -b)  if the  input  argument  is equal  to  

(a,  b).  

 This  is  supported  on  

AIX
   

cos  

complex  cos(complex)  

Returns  the  cosine  of  the  complex  argument.  

 This  is  supported  on  

400
   

z/OS
   

cos  

complex  cos(const  complex&)  

Returns  the  cosine  of  the  complex  argument.  

 This  is  supported  on  

AIX
   

cosh  

complex  cosh(complex)  

Returns  the  hyperbolic  cosine  of the  complex  argument.  

 This  is  supported  on  

400
   

z/OS
   

cosh  

complex  cosh(const  complex&)  

Returns  the  hyperbolic  cosine  of the  complex  argument.  

 This  is  supported  on  

AIX
   

exp  

complex  exp(complex)  

 

Chapter  3. Reference 59



Returns  the  complex  value  equal  to  e to the  power  of  x where  x is  the  

argument.  

 This  is supported  on  

400
   

z/OS
   

exp  

complex  exp(const  complex&)  

Returns  the  complex  value  equal  to  e to the  power  of  x where  x is  the  

argument.  

 This  is supported  on  

AIX
   

imag  

double  imag(const  complex&)  

Extracts  the  imaginary  part  of  the  complex  number  provided  as  the  

argument.  

 This  is supported  on  

400
   

z/OS
   

imag  

inline  double  imag(const  complex&)  

Extracts  the  imaginary  part  of  the  complex  number  provided  as  the  

argument.  

 This  is supported  on  

AIX
   

log  

complex  log(complex)  

Returns  the  natural  logarithm  of  the  argument  x. 

 This  is supported  on  

AIX
   

log  

complex  log(complex)  

Returns  the  natural  logarithm  of  the  argument  x. 

 This  is supported  on  

400
   

z/OS
   

norm  

double  norm(complex)  

Returns  the  square  of  the  magnitude  of its  argument.  If  the  argument  x is 

equal  to  the  complex  number  (a,  b),  norm()  returns  the  value  a2 + b2. 

 norm()  is  faster  than  abs(),  but  it is more  likely  to  cause  overflow  errors.  

 This  is supported  on  

400
   

z/OS
   

norm  

double  norm(const  complex&)  

Returns  the  square  of  the  magnitude  of its  argument.  If  the  argument  x is 

equal  to  the  complex  number  (a,  b),  norm()  returns  the  value  a2 + b2. 

 norm()  is  faster  than  abs(),  but  it is more  likely  to  cause  overflow  errors.  

 This  is supported  on  

AIX
   

 

60 C/C++  Legacy  Classes



operator  !=  

int  operator  !=(complex,  complex)  

The  inequality  operator  ″!=″  returns  a nonzero  value  if x does  not  equal  y.  

This  operator  tests  for  inequality  by  testing  that  the  two  real  components  

are  not  equal  and  that  the  two  imaginary  components  are  not  equal.  

 Because  both  components  are  double  values,  the  inequality  operator  

returns  false  only  when  both  the  real  and  imaginary  components  of the  

two  values  are  identical.  If you  want  an  inequality  operator  that  can  test  

for  an  absolute  difference  within  a certain  tolerance  between  the  two  pairs  

of  corresponding  components,  you  can  use  a function  such  as  the  

is_not_equal  function.  

 This  is  supported  on  

400
   

z/OS
   

operator  !=  

inline  int  operator  !=(const  complex&,  const  complex&)  

The  inequality  operator  ″!=″  returns  a nonzero  value  if x does  not  equal  y.  

This  operator  tests  for  inequality  by  testing  that  the  two  real  components  

are  not  equal  and  that  the  two  imaginary  components  are  not  equal.  

 Because  both  components  are  double  values,  the  inequality  operator  

returns  false  only  when  both  the  real  and  imaginary  components  of the  

two  values  are  identical.  If you  want  an  inequality  operator  that  can  test  

for  an  absolute  difference  within  a certain  tolerance  between  the  two  pairs  

of  corresponding  components,  you  can  use  a function  such  as  the  

is_not_equal  function.  

 This  is  supported  on  

AIX
   

operator  * 

complex  operator  *(complex,  complex)  

The  multiplication  operator  returns  the  product  of  x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is  supported  on  

400
   

z/OS
   

operator  * 

complex  operator  *(const  complex&,  double)  

The  multiplication  operator  returns  the  product  of  x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is  supported  on  

AIX
   

operator  * 

complex  operator  *(const  complex&,  const  complex&)  

The  multiplication  operator  returns  the  product  of  x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is  supported  on  

AIX
   

 

Chapter  3. Reference 61



operator  + 

complex  operator  +(complex,  complex)  

The  addition  operator  returns  the  sum  of x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is supported  on  

400
   

z/OS
   

operator  + 

inline  complex  operator  +(const  complex&,  const  complex&)  

The  addition  operator  returns  the  sum  of x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is supported  on  

AIX
   

operator  - 

inline  complex  operator  -(const  complex&,  const  complex&)  

The  subtraction  operator  returns  the  difference  between  x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is supported  on  

AIX
   

operator  - 

complex  operator  -(complex,  complex)  

The  subtraction  operator  returns  the  difference  between  x and  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is supported  on  

400
   

z/OS
   

operator  - 

inline  complex  operator  -(const  complex&)  

The  negation  operator  returns  (-a,  -b)  when  its  argument  is (a,  b).  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is supported  on  

AIX
   

operator  - 

complex  operator  -(complex)  

The  negation  operator  returns  (-a,  -b)  when  its  argument  is (a,  b).  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is supported  on  

400
   

z/OS
   

operator  / 

complex  operator  /(const  complex&,  double)  

The  division  operator  returns  the  quotient  of  x divided  by  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 

62 C/C++  Legacy  Classes



This  is  supported  on  

AIX
   

operator  / 

complex  operator  /(const  complex&,  const  complex&)  

The  division  operator  returns  the  quotient  of  x divided  by  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is  supported  on  

AIX
   

operator  / 

complex  operator  /(complex,  complex)  

The  division  operator  returns  the  quotient  of  x divided  by  y.  

 This  operator  has  the  same  precedence  as  the  corresponding  real  operator.  

 This  is  supported  on  

400
   

z/OS
   

operator  ==  

int  operator  ==(complex,  complex)  

The  equality  operator  ″==″  returns  a nonzero  value  if x equals  y.  This  

operator  tests  for  equality  by  testing  that  the  two  real  components  are  

equal  and  that  the  two  imaginary  components  are  equal.  

 Because  both  components  are  double  values,  the  equality  operator  tests  for  

an  exact  match  between  the  two  sets  of  values.  If you  want  an  equality  

operator  that  can  test  for  an  absolute  difference  within  a certain  tolerance  

between  the  two  pairs  of corresponding  components,  you  can  use  a 

function  such  as  the  isequal  function.  

 This  is  supported  on  

400
   

z/OS
   

operator  ==  

inline  int  operator  ==(const  complex&,  const  complex&)  

The  equality  operator  ″==″  returns  a nonzero  value  if x equals  y.  This  

operator  tests  for  equality  by  testing  that  the  two  real  components  are  

equal  and  that  the  two  imaginary  components  are  equal.  

 Because  both  components  are  double  values,  the  equality  operator  tests  for  

an  exact  match  between  the  two  sets  of  values.  If you  want  an  equality  

operator  that  can  test  for  an  absolute  difference  within  a certain  tolerance  

between  the  two  pairs  of corresponding  components,  you  can  use  a 

function  such  as  the  isequal  function.  

 This  is  supported  on  

AIX
   

polar  

complex  polar(double,  double  = 0)  

Returns  the  standard  complex  representation  of  the  complex  number  that  

has  a polar  representation  (a,  b).  

 This  is  supported  on  

AIX
   

400
   

z/OS
   

pow  

complex  pow(complex,  double)  

 

Chapter  3. Reference 63



Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

400
   

z/OS
   

pow  

complex  pow(double,  complex)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

400
   

z/OS
   

pow  

complex  pow(complex,  complex)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

400
   

z/OS
   

pow  

complex  pow(complex,  int)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

400
   

z/OS
   

pow  

complex  pow(const  complex&,  int)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

AIX
   

pow  

complex  pow(const  complex&,  double)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

AIX
   

pow  

complex  pow(const  complex&,  const  complex&)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

AIX
   

pow  

complex  pow(double,  const  complex&)  

Returns  the  complex  value  xy, where  x  is the  first  argument  and  y is the  

second  argument.  

 This  is supported  on  

AIX
   

real  

double  real(const  complex&)  

 

64 C/C++  Legacy  Classes



Extracts  the  real  part  of  the  complex  number  provided  as  the  argument.  

 This  is  supported  on  

400
   

z/OS
   

real  

inline  double  real(const  complex&)  

Extracts  the  real  part  of  the  complex  number  provided  as  the  argument.  

 This  is  supported  on  

AIX
   

sin  

complex  sin(const  complex&)  

Returns  the  sine  of the  complex  argument.  

 This  is  supported  on  

AIX
   

sin  

complex  sin(complex)  

Returns  the  sine  of the  complex  argument.  

 This  is  supported  on  

400
   

z/OS
   

sinh  

complex  sinh(const  complex&)  

Returns  the  hyperbolic  sine  of  the  complex  argument.  

 This  is  supported  on  

AIX
   

sinh  

complex  sinh(complex)  

Returns  the  hyperbolic  sine  of  the  complex  argument.  

 This  is  supported  on  

400
   

z/OS
   

sqrt  

complex  sqrt(complex)  

Returns  the  square  root  of its  argument.  If c and  d are  real  values,  then  

every  complex  number  (a,  b),  where:  

   a = c2 - d2 

   b = 2cd  

has  two  square  roots:  

   (c,  d) 

   (-c,  -d)  

sqrt()  returns  the  square  root  that  has  a positive  real  part,  that  is,  the  

square  root  that  is  contained  in  the  first  or  fourth  quadrants  of the  complex  

plane.  

 This  is  supported  on  

AIX
   

400
   

z/OS
  

complex - Inherited Member Functions and Data 

Inherited  Public  Functions  

 None  

 

Chapter  3. Reference 65



Inherited  Public  Data  

 None  

Inherited  Protected  Functions  

 None  

Inherited  Protected  Data  

 None

filebuf 

The  filebuf  class  specializes  streambuf  for  using  files  as  the  ultimate  producer  of  

the  ultimate  consumer.  

In  a filebuf  object,  characters  are  cleared  out  of the  put  area  by  doing  write  

operations  to  the  file,  and  characters  are  put  into  the  get  area  by  doing  read  

operations  from  that  file.  The  filebuf  class  supports  seek  operations  on  files  that  

allow  seek  operations.  A  filebuf  object  that  is attached  to  a file  descriptor  is said  to  

be  open.  

The  stream  buffer  is  allocated  automatically  if one  is not  specified  explicitly  with  a 

constructor  or  a call  to  setbuf().  You can  also  create  an  unbuffered  filebuf  object  by  

calling  the  constructor  or  setbuf()  with  the  appropriate  arguments.  If  the  filebuf  

object  is  unbuffered,  a system  call  is  made  for  each  character  that  is read  or  

written.  

The  get  and  put  pointers  for  a filebuf  object  behave  as a single  pointer.  This  single  

pointer  is referred  to  as  the  get/put  pointer.  The  file  that  is attached  to  the  filebuf  

object  also  has  a single  pointer  that  indicates  the  current  position  where  

information  is  being  read  or  written.  This  pointer  is called  the  file  get/put  pointer.  

Class  header  file:  fstream.h  

filebuf - Hierarchy List 

   streambuf  

    filebuf

filebuf - Member Functions and Data by Group 

Constructors & Destructor 

You can  construct  and  destruct  objects  of  the  filebuf  class.  

~filebuf  

public:~filebuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  filebuf  destructor  calls  filebuf.close().  

filebuf  

Overload  1  

public:filebuf(int  fd,  char*  p, long  l) 

This  is supported  on  

AIX
   

z/OS
   

 

66 C/C++  Legacy  Classes

|



Constructs  a filebuf  object  that  is  attached  to  the  file  descriptor  fd.  

The  object  is initialized  to  use  the  stream  buffer  starting  at the  

position  pointed  to  by  p with  length  equal  to l. 

 This  function  is  available  for  64-bit  applications.  The  third  

argument  is a long  value.  

Overload  2 

public:filebuf(int  fd)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a filebuf  object  that  is  attached  to  the  file  descriptor  fd.  

Overload  3 

public:filebuf(int  fd,  char*  p, int l) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a filebuf  object  that  is  attached  to  the  file  descriptor  fd.  

The  object  is initialized  to  use  the  stream  buffer  starting  at the  

position  pointed  to  by  p with  length  equal  to l. 

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  third  

argument  is an  int  value.
Overload  4 

public:filebuf()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  initially  closed  filebuf  object.

Attach Functions 

attach  

 Attaches  the  filebuf  object  to  the  file  descriptor  or  the  file  pointer.  

Overload  1  

public:filebuf*  attach(FILE*  fp) 

This  is  supported  on  

z/OS
   

 Attaches  the  filebuf  object  to  the  file  pointer  fp.  If  the  filebuf  object  

is  already  open,  attach()  returns  0. Otherwise,  attach()  returns  a 

pointer  to  the  filebuf  object.  

z/OS  Considerations  

If  you  have  a file  pointer  already  opened,  use  this  function  

to  do  the  attach  instead  of using  the  file  descriptor.
Overload  2 

public:filebuf*  attach(int  fd)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Attaches  the  filebuf  object  to  the  file  descriptor  fd.  If  the  filebuf  

object  is already  open  or  if fd  is not  open,  attach()  returns  NULL.  

Otherwise,  attach()  returns  a pointer  to the  filebuf  object.
is_open  

public:int  is_open()  

 

Chapter  3. Reference 67

|

|
|



This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a nonzero  value  if the  filebuf  object  is attached  to  a file  descriptor.  

Otherwise,  is_open()  returns  zero.

Data members 

openprot  

public:static  const  int openprot  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  default  protection  mode  used  when  opening  files.
in_start  

protected:char*  in_start  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Data  member.  

lahead  

protected:char  lahead  [ 2 ] 

This  is supported  on  

AIX
   

400
   

z/OS
   

 A  variable  used  to store  look-ahead  characters  during  underflow  

processing.  

last_seek  

protected:streampos  last_seek  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Stream  position  last  seeked  to.  

mode  

protected:int  mode  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Open  mode  of  the  filebuf  object.  

opened  

protected:char  opened  

This  is supported  on  

AIX
   

400
   

z/OS
   

 A  flag  used  to  track  whether  the  file  is open.  If the  file  is open,  the  value  

of  this  variable  is 1.  Otherwise  it is 0. 

xfd  

protected:int  xfd 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  file  descriptor  of  the  file  attached  to  the  filebuf  object.

Detach Functions 

close  

public:filebuf*  close()  

 

68 C/C++  Legacy  Classes



This  is  supported  on  

AIX
   

400
   

z/OS
   

 close()  does  the  following:  

1.   Flushes  any  output  that  is waiting  in  the  filebuf  object  to be  sent  to  the  

file  

2.   Disconnects  the  filebuf  object  from  the  file  

3.   Closes  the  file  that  was  attached  to  the  filebuf  object.

If  an  error  occurs,  close()  returns  0. Otherwise,  close()  returns  a pointer  to  

the  filebuf  object.  Even  if an  error  occurs,  close()  performs  the  second  and  

third  steps  listed  above.  

detach  

public:int  detach()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Disconnects  the  filebuf  object  from  the  file  without  closing  the  file.  If the  

filebuf  object  is not  open,  detach()  returns  -1.  Otherwise,  detach()  flushes  

any  output  that  is  waiting  in  the  filebuf  object  to  be  sent  to the  file,  

disconnects  the  filebuf  object  from  the  file,  and  returns  the  file  descriptor.

File Pointer Functions 

fp  

public:FILE*  fp()  

This  is  supported  on  

z/OS
   

 Returns  the  file  pointer  that  is attached  to the  filebuf  object.  If the  filebuf  

object  is not  opened,  fp()  returns  0. 

overflow  

public:virtual  int overflow(int  = EOF)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Emptys  an  output  buffer.  Returns  EOF  when  an  error  occurs.  Returns  0 

otherwise.  

seekoff  

public:virtual  streampos  seekoff(streamoff,  ios::seek_dir,  int)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Moves  the  file  get/put  pointer  to  the  position  specified  by  the  ios::seek_dir  

argument  with  the  offset  specified  by  the  streamoff  argument.  ios::seek_dir  

can  have  the  following  values:  

v   ios::beg  - the  beginning  of the  file  

v   ios::cur  - the  current  position  of the  file  get/put  pointer  

v   ios::end  - the  end  of  the  file

seekoff()  changes  the  position  of the  file  get/put  pointer  to  the  position  

specified  by  the  value  ios::seek_dir  + streamoff.  The  offset  can  be  either  

positive  or  negative.  seekoff()  ignores  the  third  argument.  

 If  the  filebuf  object  is attached  to  a file  that  does  not  support  seeking,  or  if 

the  value  of ios::seek_dir  + streamoff  specifies  a position  before  the  

beginning  of the  file,  seekoff()  returns  EOF  and  the  position  of  the  file  

get/put  pointer  is undefined.  Otherwise,  seekoff()  returns  the  new  position  

of  the  file  get/put  pointer.  

 

Chapter  3. Reference 69



z/OS  Considerations  

 You can  use  relative  byte  offsets  when  seeking  from  ios::cur  or  

ios::end.  You can  use  relative  byte  offsets  when  seeking  from  

ios::beg  if either  of  the  following  conditions  are  true: 

v   The  file  is not  a variable  record  format  file,  and  is  opened  for  

binary  I/O.  

v   The  file  is a variable  record  format  file,  and  is  opened  for  binary  

I/O  with  the  byteseek  option.  The  byteseek  option  is  enabled  for  

a specific  file  if the  byteseek  fopen()  option  is passed  when  the  

file  is opened.  The  byteseek  option  can  also  be  enabled  for  all 

files  if you  set  the  _EDC_BYTESEEK  environment  variable.

When  seeking  from  ios::beg  in  text  files,  encoded  offsets  are  used.  

You can  only  seek  to  an  offset  value  returned  by  a previous  call  to  

seekoff(),  and  attempting  to  calculate  a new  position  based  on  an  

encoded  offset  value  results  in  undefined  behaviour.
sync  

public:virtual  int sync()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Attempts  to  synchronize  the  get/put  pointer  and  the  file  get/put  pointer.  

sync()  may  cause  bytes  that  are  waiting  in  the  stream  buffer  to be  written  

to  the  file,  or  it may  reposition  the  file  get/put  pointer  if characters  that  

have  been  read  from  the  file  are  waiting  in  the  stream  buffer.  If it  is not  

possible  to  synchronize  the  get/put  pointer  and  the  file  get/put  pointer,  

sync()  returns  EOF. If they  can  be  synchronized,  sync()  returns  zero.  

underflow  

public:virtual  int underflow()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Fills  an  input  buffer.  Returns  EOF  when  an  error  occurs  or  the  end  of the  

input  is reached.  Returns  the  next  character  otherwise.

Open Functions 

z/OS  Considerations  

 The  prot  parameter  is ignored.
open  

 Opens  the  file  with  the  name  name  and  attaches  the  filebuf  object  to it. If 

name  does  not  already  exist  and  the  open  mode  om  does  not  equal  

ios::nocreate,  open()  tries  to  create  it with  protection  mode  equal  to  prot.  

The  default  value  of prot  is filebuf::openprot.  An  error  occurs  if the  filebuf  

object  is already  open.  If an  error  occurs,  open()  returns  0.  Otherwise,  

open()  returns  a pointer  to the  filebuf  object.  

 The  default  protection  mode  for  the  filebuf  class  is  S_IREAD|S_IWRITE.  If 

you  create  a file  with  both  S_IREAD  and  S_IWRITE  set,  the  file  is created  

with  both  read  and  write  permission.  If you  create  a file  with  only  

S_IREAD  set,  the  file  is created  with  read-only  permission,  and  cannot  be  

deleted  later  with  the  stdio.h  library  function  remove().  S_IREAD  and  

S_IWRITE  are  defined  in  sys\stat.h.  

 

70 C/C++  Legacy  Classes



Overload  1  

public:filebuf*  

  open(  const  char*  name,  

        int  om,  

        int  prot  = openprot  ) 

This  is  supported  on  

AIX
   

z/OS
   

Overload  2 

public:filebuf*  

  open(  const  char*  name,  

        int  om,  

        int  prot  = openprot,  

        _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is  supported  on  

400
   

Overload  3 

public:filebuf*  

  open(  const  char*  name,  

        const  char*  attr,  

        int  om,  

        int  prot  = openprot  ) 

This  is  supported  on  

z/OS
   

 You can  use  the  attr  parameter  to specify  additional  file  attributes,  

such  as  lrecl  or  recfm.  All  the  parameters  documented  for  the  

fopen()  function  are  supported,  with  the  exception  of  type=record.  

Overload  4 

public:filebuf*  open(const  char*  name,  int om,  _CCSID_T  ccsid)  

This  is  supported  on  

400
  

Query Functions 

fd  

public:int  fd()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  file  descriptor  that  is attached  to  the  filebuf  object.  If the  

filebuf  object  is closed,  fd()  returns  EOF.
last_op  

protected:int  last_op()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Indicates  whether  the  last  operation  was  a read(get)  or  a write(put)  

operation.

Stream Buffer Functions 

setbuf  

Overload  1  

public:virtual  streambuf*  setbuf(char*  p, long  len)  

This  is  supported  on  

AIX
   

z/OS
   

 Sets  up  a stream  buffer  with  length  in  bytes  equal  to len,  beginning  

at  the  position  pointed  to  by  p.  setbuf()  does  the  following:  

 

Chapter  3. Reference 71

|



v   If  p is 0 or  len  is nonpositive,  setbuf()  makes  the  filebuf  object  

unbuffered.  

v   If  the  filebuf  object  is open  and  a stream  buffer  has  been  

allocated,  no  changes  are  made  to  this  stream  buffer,  and  setbuf()  

returns  NULL.  

v   If  neither  of  these  cases  is true, setbuf()  returns  a pointer  to  the  

filebuf  object.

This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value  

Overload  2 

public:virtual  streambuf*  setbuf(char*  p, int  len)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  up  a stream  buffer  with  length  in  bytes  equal  to  len,  beginning  

at  the  position  pointed  to  by  p.  setbuf()  does  the  following:  

v   If  p is 0 or  len  is nonpositive,  setbuf()  makes  the  filebuf  object  

unbuffered.  

v   If  the  filebuf  object  is open  and  a stream  buffer  has  been  

allocated,  no  changes  are  made  to  this  stream  buffer,  and  setbuf()  

returns  NULL.  

v   If  neither  of  these  cases  is true, setbuf()  returns  a pointer  to  the  

filebuf  object.
AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value

filebuf - Inherited Member Functions and Data 

Inherited  Public  Functions  

 streambuf  

Definition  

Page  

Number  Definition  

Page  

Number  

~streambuf  175 dbp 178 

in_avail  176 optim_in_avail  176 

optim_sbumpc  176 out_waiting  183 

overflow  183 pbackfail  183 

pptr_non_null  179 sbumpc  176 

seekoff  179 seekpos  179 

setbuf  185 sgetc  176 

sgetn  177 snextc  177 

sputbackc  184 sputc  184 

sputn  184 stossc  180 

streambuf  175 streambuf_resource  185 

xsgetn  178 xsputn  185
  

Inherited  Public  Data  

 None  

 

72 C/C++  Legacy  Classes

|

|
|



Inherited  Protected  Functions  

 streambuf  

Definition  

Page  

Number  Definition  

Page  

Number  

allocate  187 base  180 

blen  187 doallocate  188 

eback  180 ebuf  180 

egptr  180 epptr  180 

gbump  181 gptr  181 

pbase  181 pbump  181 

pptr  182 setb  182 

setg  182 setp  182 

unbuffered  188 

  

Inherited  Protected  Data  

 None

fstream 

This  class  specializes  the  iostream  class  for  use  with  files.  

Class  header  file:  fstream.h  

fstream - Hierarchy List 

   ios  

    fstreambase  

    fstream

fstream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  fstream  class  can  be  constructed  and  destructed.  

~fstream  

public:~fstream()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  fstream  object.  

fstream  

 Constructs  an  object  of  this  class.  

Overload  1  

public:fstream(int  fd,  char*  p, int l) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  fstream  object  that  is  attached  to  the  file  descriptor  

fd.  If fd  is not  open,  ios::failbit  is set  in  the  format  state  of  the  

fstream  object.  This  constructor  also  sets  up  an  associated  filebuf  

object  with  a stream  buffer  that  has  length  l bytes  and  begins  at  the  

position  pointed  to  by  p. If p is equal  to  0 or  l is equal  to 0, the  

associated  filebuf  object  is unbuffered.  

 

Chapter  3. Reference 73



AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  third  

argument  is  an  int  value.
Overload  2 

public:fstream(const  char*  name,  int  mode,  _CCSID_T  ccsid)  

This  is supported  on  

400
   

 Constructs  an  fstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  ccsid  equal  to  ccsid.  

 If  the  file  cannot  be  opened,  the  error  state  of the  constructed  

fstream  object  is set.  

 If  the  ccsid  parameter  is non-zero  then  it is  treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is  zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  3 

public:fstream(int  fd)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  fstream  object  that  is attached  to the  file  descriptor  

fd.  If  fd  is  not  open,  ios::failbit  is set  in  the  format  state  of the  

fstream  object.  

Overload  4 

public:fstream(int  fd,  char*  p, long  l) 

This  is supported  on  

AIX
   

z/OS
   

 Constructs  an  fstream  object  that  is attached  to the  file  descriptor  

fd.  If  fd  is  not  open,  ios::failbit  is set  in  the  format  state  of the  

fstream  object.  This  constructor  also  sets  up  an  associated  filebuf  

object  with  a stream  buffer  that  has  length  l bytes  and  begins  at the  

position  pointed  to by  p. If p is equal  to  0 or  l is equal  to  0,  the  

associated  filebuf  object  is unbuffered.  

 This  function  is available  for  64-bit  applications.  The  third  

argument  is a long  value.  

Overload  5 

public:fstream(  const  char*  name,  

         int mode,  

         int prot  = filebuf::openprot,  

         _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is supported  on  

400
   

 Constructs  an  fstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  protection  mode  equal  to  prot,  and  ccsid  

equal  to  ccsid.  

 The  default  value  for  the  argument  prot  is filebuf::openprot.  If the  

file  cannot  be  opened,  the  error  state  of the  constructed  fstream  

object  is set.  

 

74 C/C++  Legacy  Classes

|

|
|

|



If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  6 

public:fstream(  const  char*  name,  

         const  char*  attr,  

         int  mode,  

         int  prot  = filebuf::openprot  ) 

This  is  supported  on  

z/OS
   

 Constructs  an  fstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode,  attributes  equal  to attr  and  protection  mode  

equal  to  prot.  

 The  default  value  for  the  argument  prot  is filebuf::openprot.  If the  

file  cannot  be  opened,  the  error  state  of  the  constructed  fstream  

object  is set.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes  

such  as  lrecl  or  recfm.  All  the  parameters  documented  for  the  

fopen()  functions  are  supported,  with  the  exception  of type=record.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
Overload  7 

public:fstream(  const  char*  name,  

         int  mode,  

         int  prot  = filebuf::openprot  ) 

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  an  fstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  protection  mode  equal  to prot.  

 The  default  value  for  the  argument  prot  is filebuf::openprot.  If the  

file  cannot  be  opened,  the  error  state  of  the  constructed  fstream  

object  is set.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
Overload  8 

public:fstream()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  unopened  fstream  object.

Filebuf Functions 

Use  these  functions  to  work  with  the  underlying  filebuf  object.  

rdbuf  

public:filebuf*  rdbuf()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  filebuf  object  that  is attached  to  the  fstream  object.

 

Chapter  3. Reference 75



Open Functions 

Opens  the  file.  

z/OS  Considerations  

 The  prot  parameter  is ignored.
open  

 Opens  the  specified  file.  

Overload  1  

public:void  

  open(  const  char*  name,  

        int  mode,  

        int  prot  = filebuf::openprot  ) 

This  is supported  on  

AIX
   

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to a file  of if the  call  to fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

Overload  2 

public:void  

  open(  const  char*  name,  

        int  mode,  

        int  prot  = filebuf::openprot,  

        _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode,  protection  and  

coded  character  set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to a file  or  if the  call  to  fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is  treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is  zero  

then  the  CCSID  of the  job  will  be  used.  

 

76 C/C++  Legacy  Classes



Overload  3 

public:void  

  open(  const  char*  name,  

        const  char*  attr,  

        int  mode,  

        int  prot  = filebuf::openprot  ) 

This  is  supported  on  

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes,  

such  as  lrecl  or  recfm.  All  the  parameters  documented  for  the  

fopen()  function  are  supported,  with  the  exception  of  type=record.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

Overload  4 

public:void  open(const  char*  name,  int  mode,  _CCSID_T  ccsid)  

This  is  supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode  and  coded  character  

set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it unless  ios::nocreate  is set.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.

fstream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 fstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

~fstreambase  79 attach  81 

close  82 detach  82 

fstreambase  79 setbuf  84
 

 

Chapter  3. Reference 77



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

 fstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

verify  82 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

 

78 C/C++  Legacy  Classes



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

fstreambase 

The  fstreambase  class  is an  internal  class  that  provides  common  functions  for  the  

classes  that  are  derived  from  it;  fstream,  ifstream  and  ofstream.  The  fstreambase  

class  inherits  from  the  ios  class.  Do  not  use  the  fstreambase  class  directly.  

Class  header  file:  fstream.h  

fstreambase - Hierarchy List 

   ios  

    fstreambase  

    ifstream  

    fstream  

    ofstream

fstreambase - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  fstreambase  class  can  be  constructed  and  destructed  by  objects  that  

derive  from  it.  These  constructors  and  destructors  should  not  be  used  directly.  

~fstreambase  

public:~fstreambase()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  fstreambase  object.  

fstreambase  

 Constructs  an  object  of  this  class.  

Overload  1  

public:fstreambase(int  fd, char*  p, int  l) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  does  the  following:  

 v   constructs  an  fstreambase  object  

v   initializes  the  filebuf  object  to  the  file  descriptor  passed  in  

v   initializes  the  streambuf  object  and  sets  the  get  and  put  pointers  

based  on  the  pointer  p and  the  length  l 

v   initializes  the  ios  object.

If  the  file  is already  open,  it clears  the  ios  state.  Otherwise,  it sets  

the  ios::failbit  in  the  format  state  of  the  object.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  third  

argument  is an  int  value.

 

Chapter  3. Reference 79

|

|
|



Overload  2 

public:fstreambase(  const  char*  name,  

             const  char*  attr,  

             int  mode,  

             int  prot  = filebuf::openprot  ) 

This  is supported  on  

z/OS
   

 Constructs  an  fstreambase  object,  initializes  the  ios  object,  and  

opens  the  specified  file  with  the  specified  mode,  attributes  and  

protection.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes  

such  as  lrecl  or recfm.  All  the  parameters  documented  for  the  

fopen()  functions  are  supported,  with  the  exception  of type=record.  

z/OS  Considerations  

 The  prot  parameter  is ignored.
Overload  3 

public:fstreambase(int  fd) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  does  the  following:  

 v   constructs  an  fstreambase  object  

v   initializes  the  filebuf  object  to  the  file  descriptor  passed  in  

v   initializes  the  ios  object.

If  the  file  is already  open,  it clears  the  ios  state.  Otherwise,  it sets  

the  ios::failbit  in the  format  state  of  the  object.  

Overload  4 

public:fstreambase(int  fd, char*  p, long  l) 

This  is supported  on  

AIX
   

z/OS
   

 This  constructor  does  the  following:  

 v   constructs  an  fstreambase  object  

v   initializes  the  filebuf  object  to  the  file  descriptor  passed  in  

v   initializes  the  streambuf  object  and  sets  the  get  and  put  pointers  

based  on  the  pointer  p and  the  length  l 

v   initializes  the  ios  object.

If  the  file  is already  open,  it clears  the  ios  state.  Otherwise,  it sets  

the  ios::failbit  in the  format  state  of  the  object.  

 This  function  is available  for  64-bit  applications.  The  third  

argument  is a long  value.  

Overload  5 

public:fstreambase(  const  char*  name,  

             int  mode,  

             int  prot  = filebuf::openprot,  

             _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is supported  on  

400
   

 Constructs  an  fstreambase  object,  initializes  the  ios  object,  and  

opens  the  specified  file  with  the  specified  mode,  protection,  and  

ccsid.  

 

80 C/C++  Legacy  Classes

|



If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  6 

public:fstreambase(const  char*  name,  int  mode,  _CCSID_T  ccsid)  

This  is  supported  on  

400
   

 Constructs  an  fstreambase  object,  initializes  the  ios  object,  and  

opens  the  specified  file  with  the  specified  mode  and  ccsid.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  7 

public:fstreambase(  const  char*  name,  

             int mode,  

             int prot  = filebuf::openprot  ) 

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  an  fstreambase  object,  initializes  the  ios  object,  and  

opens  the  specified  file  with  the  specified  mode  and  protection.  

z/OS  Considerations  

 The  prot  parameter  is ignored.
Overload  8 

public:fstreambase()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Default  constructor.  Constructs  an  fstreambase  object  and  initializes  

the  ios  object.

Filebuf Functions 

Use  these  functions  to  work  with  the  underlying  filebuf  object.  

attach  

 Attaches  the  fstream,  ifstream  or  ofstream  object  to  the  file  descriptor  or  

file  pointer.  

Overload  1  

public:void  attach(FILE*  fp)  

This  is  supported  on  

z/OS
   

 Attaches  the  fstream,  ifstream  or  ofstream  object  to the  file  pointer  

fp.  If the  object  is already  attached  to  a file  pointer,  an  error  occurs  

and  ios::failbit  is set  in  the  format  state  of  the  object.  

Overload  2 

public:void  attach(int  fd)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 81



Attaches  the  fstream,  ifstream  or  ofstream  object  to the  file  

descriptor  fd.  If  the  object  is already  attached  to  a file  descriptor,  

an  error  occurs  and  ios::failbit  is set  in the  format  state  of  the  

object.
close  

public:void  close()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Closes  the  filebuf  object,  breaking  the  connection  between  the  fstream,  

ifstream  or  ofstream  object  and  the  file  descriptor.  close()  calls  

filebuf->close().  If  this  call  fails,  the  error  state  of the  fstream,  ifstream  or  

ofstream  object  is not  cleared.  

detach  

public:int  detach()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Detaches  the  filebuf  object,  breaking  the  connection  between  the  fstream,  

ifstream  or  ofstream  object  and  the  file  descriptor.  detach()  calls  

filebuf->detach().  

rdbuf  

public:filebuf*  rdbuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  filebuf  object  that  is  attached  to  the  fstream,  

ifstream  or  ofstream  object.

Miscellaneous Functions 

verify  

protected:void  verify(int)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Clears  the  format  state  of  the  object  or  sets  the  ios::failbit  in  the  format  

state  of  the  object  depending  on  the  value  of the  argument.  If the  argument  

value  is  1,  the  format  state  is cleared,  otherwise  the  ios::failbit  is set.

Open Functions 

open  

 Opens  the  specified  file.  

Overload  1  

public:void  

  open(  const  char*  name,  

        const  char*  attr,  

        int  mode,  

        int  prot  = filebuf::openprot  ) 

This  is supported  on  

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 

82 C/C++  Legacy  Classes



You can  use  the  attr  parameter  to specify  additional  file  attributes,  

such  as  lrecl  or  recfm.  All  the  parameters  documented  for  the  

fopen()  function  are  supported,  with  the  exception  of  type=record.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

Overload  2 

public:void  open(const  char*  name,  int  mode,  _CCSID_T  ccsid)  

This  is  supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode  and  coded  character  

set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it unless  ios::nocreate  is set.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  3 

public:void  

  open(  const  char*  name,  

        int  mode,  

        int  prot  = filebuf::openprot,  

        _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is  supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode,  protection  and  

coded  character  set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to  a file  or  if the  call  to  fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

 

Chapter  3. Reference 83



of  data  written  to  and  from  the  file.  If  the  parameter  value  is  zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  4 

public:void  

  open(  const  char*  name,  

        int  mode,  

        int  prot  = filebuf::openprot  ) 

This  is supported  on  

AIX
   

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to a file  of if the  call  to fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.

Stream Buffer Functions 

Use  these  functions  to  work  with  the  underlying  streambuf  object.  

setbuf  

Overload  1  

public:void  setbuf(char*  p, long  l) 

This  is supported  on  

AIX
   

z/OS
   

 Sets  up  a stream  buffer  with  length  in  bytes  equal  to  l beginning  at 

the  position  pointed  to  by  p.  If p is  equal  to  0 or  l is nonpositive,  

the  fstream,  ifstream  or  ofstream  object  (fb)  will  be  unbuffered.  If 

fb  is  open,  or the  call  to  fb->setbuf()  fails,  setbuf()  sets  ios::failbit  in  

the  object’s  state.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  2 

public:void  setbuf(char*  p, int l) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  up  a stream  buffer  with  length  in  bytes  equal  to  l beginning  at 

the  position  pointed  to  by  p.  If p is  equal  to  0 or  l is nonpositive,  

the  fstream,  ifstream  or  ofstream  object  (fb)  will  be  unbuffered.  If 

fb  is  open,  or the  call  to  fb->setbuf()  fails,  setbuf()  sets  ios::failbit  in  

the  object’s  state.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.

 

84 C/C++  Legacy  Classes

|

|

|
|



fstreambase - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
 

 

Chapter  3. Reference 85



ifstream 

This  class  specializes  the  istream  class  for  use  with  files.  

Class  header  file:  fstream.h  

ifstream - Hierarchy List 

   ios  

    fstreambase  

    ifstream

ifstream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  ifstream  class  can  be  constructed  and  destructed.  

~ifstream  

public:~ifstream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  ifstream  object.  

ifstream  

 Constructs  an  object  of this  class.  

Overload  1  

public:ifstream(int  fd,  char*  p, int l) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  ifstream  object  that  is attached  to  the  file  descriptor  

fd.  If  fd  is  not  open,  ios::failbit  is set  in  the  format  state  of the  

ifstream  object.  This  constructor  also  sets  up  an  associated  filebuf  

object  with  a stream  buffer  that  has  length  l bytes  and  begins  at the  

position  pointed  to by  p. If p is equal  to  0 or  l is equal  to  0,  the  

associated  filebuf  object  is unbuffered.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  third  

argument  is  an  int  value.
Overload  2 

public:ifstream(  const  char*  name,  

          const  char*  attr,  

          int  mode  = ios::in,  

          int  prot  = filebuf::openprot  ) 

This  is supported  on  

z/OS
   

 Constructs  an  ifstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode,  attributes  equal  to  attr  and  protection  mode  

equal  to  prot.  The  default  value  for  the  argument  prot  is 

filebuf::openprot.  If the  file  cannot  be  opened,  the  error  state  of  the  

constructed  fstream  object  is set.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes  

such  as  lrecl  or recfm.  All  the  parameters  documented  for  the  

fopen()  functions  are  supported,  with  the  exception  of type=record.  

 

86 C/C++  Legacy  Classes

|

|
|



z/OS  Considerations  

 The  prot  attribute  is ignored.
Overload  3 

public:ifstream(int  fd)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  ifstream  object  that  is attached  to the  file  descriptor  

fd.  If fd  is not  open,  ios::failbit  is set  in  the  format  state  of  the  

ifstream  object.  

Overload  4 

public:ifstream(int  fd,  char*  p, long  l) 

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  an  ifstream  object  that  is attached  to the  file  descriptor  

fd.  If fd  is not  open,  ios::failbit  is set  in  the  format  state  of  the  

ifstream  object.  This  constructor  also  sets  up  an  associated  filebuf  

object  with  a stream  buffer  that  has  length  l bytes  and  begins  at  the  

position  pointed  to  by  p. If p is equal  to  0 or  l is equal  to 0, the  

associated  filebuf  object  is unbuffered.  

 This  function  is  available  for  64-bit  applications.  The  third  

argument  is a long  value.  

Overload  5 

public:ifstream(  const  char*  name,  

          int  mode  = ios::in,  

          int  prot  = filebuf::openprot,  

          _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is  supported  on  

400
   

 Constructs  an  ifstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  protection  mode  equal  to prot,  and  ccsid  

equal  to  ccsid.  The  default  value  for  the  argument  prot  is 

filebuf::openprot.  If the  file  cannot  be  opened,  the  error  state  of the  

constructed  fstream  object  is set.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  6 

public:ifstream(const  char*  name,  int mode,  _CCSID_T  ccsid)  

This  is  supported  on  

400
   

 Constructs  an  ifstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  ccsid  equal  to  ccsid.  If the  file  cannot  be  

opened,  the  error  state  of the  constructed  fstream  object  is set.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

 

Chapter  3. Reference 87

|



Overload  7 

public:ifstream(  const  char*  name,  

          int  mode  = ios::in,  

          int  prot  = filebuf::openprot  ) 

This  is supported  on  

AIX
   

z/OS
   

 Constructs  an  ifstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  protection  mode  equal  to  prot.  The  

default  value  for  mode  is ios::in  and  for  prot  is filebuf::openprot.  If 

the  file  cannot  be  opened,  the  error  state  of  the  constructed  

ifstream  object  is set.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
Overload  8 

public:ifstream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  unopened  ifstream  object.

Filebuf Functions 

rdbuf  

public:filebuf*  rdbuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  filebuf  object  that  is  attached  to  the  ifstream  object.

Open Functions 

Opens  the  file.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
open  

 Opens  the  specified  file.  

Overload  1  

public:void  

  open(  const  char*  name,  

        int  mode  = ios::in,  

        int  prot  = filebuf::openprot,  

        _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode,  protection  and  

coded  character  set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to a file  or  if the  call  to  fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 

88 C/C++  Legacy  Classes



The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  2 

public:void  

  open(  const  char*  name,  

        int  mode  = ios::in,  

        int  prot  = filebuf::openprot  ) 

This  is  supported  on  

AIX
   

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to  a file  of  if the  call  to fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

Overload  3 

public:void  open(const  char*  name,  int  mode,  _CCSID_T  ccsid)  

This  is  supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode  and  coded  character  

set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it unless  ios::nocreate  is set.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  4 

public:void  

  open(  const  char*  name,  

        const  char*  attr,  

        int  mode  = ios::in,  

        int  prot  = filebuf::openprot  ) 

 

Chapter  3. Reference 89



This  is supported  on  

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes,  

such  as  lrecl  or recfm.  All  the  parameters  documented  for  the  

fopen()  function  are  supported,  with  the  exception  of type=record.  

 The  members  of the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.

ifstream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 fstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

~fstreambase  79 attach  81 

close  82 detach  82 

fstreambase  79 open  82 

setbuf  84 

  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

 

90 C/C++  Legacy  Classes



Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

 fstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

verify  82 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

ios 

The  ios  class  is  the  base  class  for  the  classes  that  format  data  that  is extracted  from  

or  inserted  into  the  stream  buffer.  The  derived  classes  support  the  movement  of 

formatted  and  unformatted  data  to  and  from  the  stream  buffer.  

The  ios  class  maintains  the  format  and  error  state  information  for  the  classes  that  

are  derived  from  it.  The  format  state  is a collection  of flags  and  variables  that  can  

be  set  to  control  the  details  of formatting  operations  for  input  and  output.  The  

error  state  is  a collection  of  flags  that  records  whether  any  errors  have  taken  place  

in  the  processing  of  the  ios  object.  It also  recoreds  whether  the  end  of  an  input  

stream  has  been  reached.  

Class  header  file:  iostream.h  

ios - Hierarchy List 

   ios  

    ostream  

    fstreambase  

    stdiostream  

    strstreambase  

    istream

 

Chapter  3. Reference 91



ios - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  ios  class  can  be  constructed  and  destructed.  

~ios  

public:virtual  ~ios()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  ios  object.  

ios  

 Creates  an  ios  object.  

Overload  1  

public:ios(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  streambuf  object  is associated  with  the  constructed  ios  object.  

If  this  argument  is  equal  to  0, the  result  is undefined.  

Overload  2 

protected:ios()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  version  of the  ios  constructor  takes  no  arguments  and  is  

declared  as  protected.  The  ios  class  is used  as  a virtual  base  class  

for  iostream,  and  therefore  the  ios  class  must  have  a constructor  

that  takes  no  arguments.  If  you  use  this  constructor  in  a derived  

class,  you  must  use  the  init()  function  to associated  the  constructed  

ios  object  with  the  streambuf  object.

Data members 

adjustfield  

public:static  const  long  adjustfield  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

basefield  

public:static  const  long  basefield  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

floatfield  

public:static  const  long  floatfield  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.
assign_private  

protected:int  assign_private  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

92 C/C++  Legacy  Classes



Data  member  for  the  ios  class.  

bp  

protected:streambuf*  bp 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  Pointer  to the  streambuf  object.  

delbuf  

protected:int  delbuf  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

isfx_special  

protected:int  isfx_special  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

ispecial  

protected:int  ispecial  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

osfx_special  

protected:int  osfx_special  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

ospecial  

protected:int  ospecial  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

state  

protected:int  state  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

x_flags  

protected:long  x_flags  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Data  member  for  the  ios  class.  

x_tie  

protected:ostream*  x_tie  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 93



Data  member  for  the  ios  class.

Error State Functions 

bad  

public:int  bad()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a nonzero  value  is  ios::badbit  is set  in  the  error  state  of  the  ios  

object.  Otherwise,  it returns  0. 

 ios::badbit  is  usually  set  when  some  operation  on  the  streambuf  object  that  

is  associated  with  the  ios  object  has  failed.  It  will  probably  not  be  possible  

to  continue  input  and  output  operations  on  the  ios  object.  

clear  

public:void  clear(int  i = 0) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Changes  the  error  state  of  the  ios  object  to  the  specified  value.  If the  

argument  equals  0 (its  default),  all  of the  bits  in  the  error  state  are  cleared.  

If  you  want  to set  one  of  the  bits  without  clearing  or  setting  the  other  bits  

in  the  error  state,  you  can  perform  a bitwise  OR  between  the  bit  you  want  

to  set  and  the  current  error  state.  For  example,  the  following  statement  sets  

ios::badbit  in  the  ios  object  and  leaves  all  the  other  error  state  bits  

unchanged:  

   iosobj.clear(ios::badbit  | iosobj.rdstate());  

eof  

public:int  eof()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a nonzero  value  if ios::eofbit  is set  in  the  error  state  of  the  ios  

object.  Otherwise,  it returns  0. 

 ios::eofbit  is  usually  set  when  an  EOF  has  been  encountered  during  an  

extraction  operation.  

fail  

public:int  fail()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a nonzero  value  if either  ios::badbit  or  ios::failbit  is set  in  the  error  

state.  Otherwise,  it returns  0.  

good  

public:int  good()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a nonzero  value  if no  bits  are  set  in  the  error  state  of the  ios  object.  

Otherwise,  it returns  0. 

rdstate  

public:int  rdstate()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

94 C/C++  Legacy  Classes



Returns  the  current  value  of the  error  state  of  the  ios  object.
setstate  

protected:void  setstate(int  b) 

This  is  supported  on  

AIX
   

400
   

z/OS
  

Format State Functions 

fill  

Overload  1  

public:char  fill()  const  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  value  of  ios::x_fill  of  the  ios  object.  

 ios::x_fill  is the  character  used  as  padding  if the  field  is wider  than  

the  representation  of a value.  The  default  value  for  ios::x_fill  is a 

space.  The  ios::left,  ios::right  and  ios::internal  flags  determine  the  

position  of  the  fill  character.  

 You can  also  use  the  parameterized  manipulator  setfill  to  set  the  

value  of  ios::x_fill.  

Overload  2 

public:char  fill(char)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  value  of ios::x_fill  of  the  ios  object  to  the  specified  

character.  

 ios::x_fill  is the  character  used  as  padding  if the  field  is wider  than  

the  representation  of a value.  The  default  value  for  ios::x_fill  is a 

space.  The  ios::left,  ios::right  and  ios::internal  flags  determine  the  

position  of  the  fill  character.  

 You can  also  use  the  parameterized  manipulator  setfill  to  set  the  

value  of  ios::x_fill.
flags  

Overload  1  

public:long  flags()  const  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  value  of  the  flags  that  make  up  the  current  format  

state.  

Overload  2 

public:long  flags(long  f) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  flags  in  the  format  state  to the  settings  specified  in  the  

argument  and  returns  the  value  of the  previous  settings  of the  

format  flags.
precision  

 

Chapter  3. Reference 95



Overload  1  

public:int  precision()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  value  of ios::x_precision.  

 ios::x_precision  controls  the  number  of significant  digits  when  

floating-point  values  are  inserted.  

 The  format  state  in  effect  when  precision()  is called  affects  the  

behavior  of  precision().  If  neither  ios::scientific  nor  ios::fixed  is set,  

ios::x_precision  specifies  the  number  of  significant  digits  in the  

floating-point  value  that  is being  inserted.  If,  in  addition,  

ios::showpoint  is not  set,  all  trailing  zeros  are  removed  and  a 

decimal  point  only  appears  if it is followed  by  digits.  

 If  either  ios::scientific  or  ios::fixed  is set,  ios::x_precision  specifies  

the  number  of digits  following  the  decimal  point.  

Overload  2 

public:int  precision(int)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  value  of ios::x_precision  to the  specified  value  and  returns  

the  previous  value.  The  value  must  be  greater  than  0.  If  the  value  

is  negative,  the  value  of  ios::x_precision  is  set  to  the  default  value,  

6. 

 You can  also  use  the  parameterized  manipulator  setprecision  to  set  

ios::x_precision.  

 The  format  state  in  effect  when  precision()  is called  affects  the  

behavior  of  precision().  If  neither  ios::scientific  nor  ios::fixed  is set,  

ios::x_precision  specifies  the  number  of  significant  digits  in the  

floating-point  value  that  is being  inserted.  If,  in  addition,  

ios::showpoint  is not  set,  all  trailing  zeros  are  removed  and  a 

decimal  point  only  appears  if it is followed  by  digits.  

 If  either  ios::scientific  or  ios::fixed  is set,  ios::x_precision  specifies  

the  number  of digits  following  the  decimal  point.
setf  

Overload  1  

public:long  setf(long  setbits,  long  field)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  function  clears  the  format  flags  specified  in  field,  sets  the  

format  flags  specified  in  setbits,  and  returns  the  previous  value  of 

the  format  state.  

 For  example,  to  change  the  conversion  base  in the  format  state  to  

ios::hex,  you  could  use  a statement  like  this:  

   s.setf(ios::hex,  ios::basefield);  

 

96 C/C++  Legacy  Classes



In  this  statement,  ios::basefield  specifies  the  conversion  base  as  the  

format  flag  that  is  going  to  be  changed  and  ios::hex  specifies  the  

new  value  for  the  conversion  base.  If setbits  equals  0, all  of  the  

format  flags  specified  in  field  are  cleared.  

 You can  also  use  the  parameterized  manipulator  resetiosflags  to  

clear  format  flags.  

 Note:  If  you  set  conflicting  flags  the  results  are  unpredictable.  

Overload  2 

public:long  setf(long)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  function  is  accumulative.  It sets  the  format  flags  that  are  

specified  in  the  argument,  without  affecting  format  flags  that  are  

not  marked  in  the  argument,  and  returns  the  previous  value  of  the  

format  state.  

 You can  also  use  the  parameterized  manipulator  setiosflags  to set  

the  format  flags  to  a specific  setting.
skip  

public:int  skip(int  i) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  format  flag  ios::skipws  if the  value  of  the  argument  i does  not  

equal  0.  If  i does  equal  0,  ios::skipws  is cleared.  

 skip()  returns  a value  of  1 if ios::skipws  was  set  prior  to  the  call  to  skip(),  

and  returns  0 otherwise.  

unsetf  

public:long  unsetf(long)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Turns  off  the  format  flags  specified  in  the  argument  and  returns  the  

previous  format  state.  

width  

Overload  1  

public:int  width()  const  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  value  of  the  current  setting  of the  format  state  field  

width  variable,  ios::x_width.  

 If  the  value  of ios::x_width  is smaller  than  the  space  needed  for  the  

representation  of  the  value,  the  full  value  is  still  inserted.  

Overload  2 

public:int  width(int  w)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  ios::x_width  to  the  value  w  and  returns  the  previous  value.  

 

Chapter  3. Reference 97



The  default  field  width  is 0.  When  the  value  of  ios::x_width  is 0,  

the  operations  that  insert  values  only  insert  the  characters  needed  

to  represent  a value.  

 If  the  value  of ios::x_width  is greater  than  0, the  characters  needed  

to  represent  the  value  are  inserted.  Then  fill  characters  are  inserted,  

if necessary,  so  that  the  representation  of the  value  takes  up  the  

entire  field.  ios::x_width  only  specifies  a minimum  width,  not  a 

maximum  width.  If the  number  of  characters  needed  to  represent  a 

value  is greater  than  the  field  width,  none  of  the  characters  is 

truncated.  After  every  insertion  of  a value  of  a numeric  or  string  

type  (including  char*,  unsigned  char  *, signed  char*,  and  wchar_t*,  

but  excluding  char,  unsigned  char, signed  char, and  wchar_t),  the  

value  of ios::x_width  is reset  to 0. After  every  extraction  of  a value  

of  type  char*,  unsigned  char*,  signed  char*,  or  wchar_t*,  the  value  

of  ios::x_width  is reset  to 0. 

 You can  also  use  the  parameterized  manipulator  setw  to  set  the  

field  width.

Format State Variables 

The  format  state  is  a collection  of  format  flags  and  format  variables  that  control  the  

details  of  formatting  for  input  and  output  operations.  

x_fill  

protected:char  x_fill  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Represents  the  character  that  is used  to  pad  values  that  do  not  require  the  

width  of  an  entire  field  for  their  representation.  Its  default  value  is a space  

character.  

x_precision  

protected:short  x_precision  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Represents  the  number  of significant  digits  in  the  representation  of  

floating-point  values.  Its  default  value  is 6.  

x_width  

protected:short  x_width  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Represents  the  minimum  width  of  a field.  Its  default  value  is 0.

Initialization Functions 

init  

protected:void  init(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
  

Locking functions 

ios_resource  

public:IRTLResource&  ios_resource()  const  

This  is supported  on  

z/OS
  

 

98 C/C++  Legacy  Classes



Miscellaneous Functions 

bitalloc  

public:static  long  bitalloc()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 A  static  function  that  returns  a long  value  with  a previously  unallocated  bit  

set.  You can  use  this  long  value  as  an  additional  flag,  and  pass  it as  an  

argument  to  the  format  state  member  functions.  When  all  the  bits  are  

exhausted,  bitalloc()  returns  0.  

iword  

public:long&  iword(int)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a reference  to  the  indexed  user-defined  flag,  where  the  index  used  

in  the  argument  to  this  function  is  returned  by  xalloc().  

 iword()  allocates  space  for  the  user-defined  flag.  If  the  allocation  fails,  

iword()  sets  ios::failbit.  You should  check  ios::failbit  after  calling  iword().  

operator  ! 

public:int  operator  !() const  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  ! operator  returns  a nonzero  value  if ios::failbit  or  ios::badbit  is set  in  

the  error  state  of the  ios  object.  

 For  example,  you  could  write:  

   if  (!cin)  

      cout  << "either  ios::failbit  or ios::badbit  is  set"   << endl;  

   else  

      cout  << "neither  ios::failbit  nor ios::badbit  is set"  << endl;  

operator  const  void  * 

public:operator  const  void  *()  const  

This  is  supported  on  

AIX
   

400
   

z/OS
   

operator  void  * 

public:operator  void  *()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

pword  

public:void  *& pword(int)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a reference  to  a pointer  to the  indexed  user-defined  flag  where  the  

index  used  in the  argument  to this  function  is returned  by  xalloc().  

 pword()  allocates  space  for  the  user-defined  flag.  If  the  allocation  fails,  

pword()  sets  ios::failbit.  You should  check  ios::failbit  after  calling  pword().  

 On  platforms  where  long  and  pointer  types  are  the  same  size,  pword()  is 

the  same  as  iword(),  except  that  the  two  functions  return  different  types.  

 

Chapter  3. Reference 99



rdbuf  

public:streambuf*  rdbuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  streambuf  object  that  is associated  with  the  ios  

object.  This  is the  streambuf  object  that  was  passed  as an  argument  to  the  

ios  constructor.  

sync_with_stdio  

public:static  void  sync_with_stdio()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 sync_with_stdio()  is a static  function  that  solves  the  problems  that  occur  

when  you  call  functions  declared  in stdio.h  and  I/O  Stream  Library  

functions  in  the  same  program.  The  first  time  that  you  call  

sync_with_stdio(),  it attaches  stdiobuf  objects  to  the  predefined  streams  cin,  

cout  and  cerr. After  that,  input  and  output  using  these  predefined  streams  

can  be  mixed  with  input  and  output  using  the  corresponding  FILE  objects  

(stdin,  stdout,  and  stderr).  This  input  and  output  are  correctly  

synchronized.  

 If  you  switch  between  the  I/O  Stream  Library  formatted  extraction  

functions  and  stdio.h  functions,  you  may  find  that  a byte  is ″lost″. The  

reason  is that  the  formatted  extraction  functions  for  integers  and  

floating-point  values  keep  extracting  characters  until  a nondigit  character  is 

encountered.  This  nondigit  character  acts  as a delimiter  for  the  value  that  

preceded  it.  Because  it  is not  part  of  the  value,  putback()  is called  to  return  

it  to  the  stream  buffer.  If  a C stdio  library  function,  such  as  getchar(),  

performs  the  next  input  operation,  it will  begin  input  at the  character  after  

this  nondigit  character.  Thus,  this  nondigit  character  is not  part  of the  

value  extracted  by  the  formatted  extraction  function,  and  it is not  the  

character  extracted  by  the  C stdio  library  function.  It is  ″lost″. Therefore,  

you  should  avoid  switching  between  the  I/O  Stream  Library  formatted  

extraction  functions  and  C  stdio  library  functions  whenever  possible.  

 sync_with_stdio()  makes  cout  and  clog  unit  buffered.  After  you  call  

sync_with_stdio(),  the  performance  of  your  program  could  diminish.  The  

performance  of  your  program  depends  on  the  length  of  strings,  with  

performance  diminishing  most  when  the  strings  are  shortest.  

tie  

Overload  1  

public:ostream*  tie()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  value  of ios::x_tie.  

 ios::x_tie  is  the  tie  variable  that  points  to the  ostream  object  that  is 

tied  to  the  ios  object.  

 You can  use  ios::x_tie  to  automatically  flush  the  stream  buffer  

attached  to  an  ios  object.  If ios::x_tie  for  an  ios  object  is not  equal  

to  0 and  the  ios  object  needs  more  characters  or  has  characters  to  

be  consumed,  the  ostream  object  pointed  to  by  ios::x_tie  is flushed.  

 

100 C/C++  Legacy Classes



By  default,  the  tie  variables  of  the  predefined  streams  cin,  cerr  and  

clog  all  point  to the  predefined  stream  cout.  

Overload  2 

public:ostream*  tie(ostream*  s) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  tie  variable,  ios::x_tie,  equal  to  the  specified  ostream  and  

returns  the  previous  value.  

 You can  use  ios::x_tie  to  automatically  flush  the  stream  buffer  

attached  to  an  ios  object.  If ios::x_tie  for  an  ios  object  is not  equal  

to  0 and  the  ios  object  needs  more  characters  or  has  characters  to  

be  consumed,  the  ostream  object  pointed  to  by  ios::x_tie  is flushed.  

 By  default,  the  tie  variables  of  the  predefined  streams  cin,  cerr  and  

clog  all  point  to the  predefined  stream  cout.
xalloc  

 A  static  function  that  returns  an  unused  index  into  an  array  of  words  

available  for  use  as  format  state  variables  by  classes  derived  from  ios.  

 xalloc()  simply  returns  a new  index;  it  does  not  do  any  allocation.  iword()  

and  pword()  do  the  allocation,  and  if the  allocation  fails,  they  set  

ios::failbit.  You should  check  ios::failbit  after  calling  iword()  or  pword().  

Overload  1  

public:static  int xalloc()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 The  value  returned  is an  int  for  32-bit  applications.  This  

function  is not  available  for  64-bit  applications.
Overload  2 

public:static  long  xalloc()  

This  is  supported  on  

AIX
   

z/OS
   

 The  value  returned  is  a long  for  64-bit  applications.  This  function  is 

not  available  for  32-bit  applications.
(  * stdioflush  ) ( ) 

protected:static  void  ( * stdioflush  ) ( ) 

This  is  supported  on  

AIX
   

400
   

z/OS
  

ios - Enumerations 

 

 White  Space  and  Padding  

  The  following  values  are  set  by  default:  

v   skipws  and  right

skipws  

  If  ios::skipws  is set,  white  space  will  be  skipped  on  input.  If  it is  not  set,  

white  space  is not  skipped.  If  ios::skipws  is not  set,  the  arithmetic  

extractors  will  signal  an  error  if you  attempt  to  read  an  integer  or  

 

Chapter  3. Reference 101

|

|
|

|



floating-point  value  that  is preceded  by  white  space.  ios::failbit  is set,  and  

extraction  ceases  until  it is cleared.  This  is done  to  avoid  looping  problems.  

If  the  following  program  is run with  an  input  file  that  contains  integer  

values  separated  by  spaces,  ios::failbit  is  set  after  the  first  integer  value  is 

read,  and  the  program  halts.  If the  program  did  not  fail()  at the  beginning  

of  the  while  loop  to  test  if ios::failbit  is set,  it would  loop  indefinitely.  

   #include  < fstream.h  > 

   int  main()  

   { 

      fstream  f("spadina.dat",  ios::in);  

      f.unsetf(ios::skipws);  

      int  i; 

      while  (!f.eof()  && !f.fail())  { 

         f >> i; 

         cout  <<  i; 

      } 

   } 

left  

  If  ios::left  is  set,  the  value  is  left-justified.  Fill  characters  are  added  after  the  

value.  

 right  

  If  ios::right  is set,  the  value  is right-justified.  Fill  characters  are  added  

before  the  value.  

 internal  

  If  ios::internal  is set,  the  fill  characters  are  added  after  any  leading  sign  or  

base  notation,  but  before  the  value  itself.  

 Base  Conversion  

  The  manipulators  ios::dec,  ios::oct,  and  ios::hex  have  the  same  effect  as  the  

flags  ios::dec,  ios::oct,  and  ios::hex  respectively.  dec  is set  by  default.  

 dec  

  If  ios::dec  is set,  the  conversion  base  is 10.  

 oct  

  If  ios::oct  is  set,  the  conversion  base  is 8. 

 hex  

  If  ios::hex  is set,  the  conversion  base  is 16.  

 showbase  

  If  ios::showbase  is set,  the  operation  that  inserts  values  converts  them  to an  

external  form  that  can  be  read  according  to  the  C++  lexical  conventions  for  

integral  constants.  By  default,  ios::showbase  is unset.  

 Integral  Formatting  

 

102 C/C++  Legacy Classes



The  following  manipulator  affects  integral  formatting:  

 showpos  

  If  ios::showpos  is  set,  the  operation  that  inserts  values  places  a positive  

sign  ″+″  into  decimal  conversions  of positive  integral  values.  By  default,  

showpos  is not  set.  

 Floating-Point  Formatting  

  The  following  format  flags  control  the  formatting  of floating-point  values:  

 showpoint  

  If  ios:showpoint  is set,  trailing  zeros  and  a decimal  point  appear  in the  

result  of a floating-point  conversion.  This  flag  has  no  effect  if either  

ios::scientific  or  ios::fixed  is set.  

 scientific  

  If  ios::scientific  is set,  the  value  is converted  using  scientific  notation.  In 

scientific  notation,  there  is one  digit  before  the  decimal  point  and  the  

number  of  digits  following  the  decimal  point  depends  on  the  value  of 

ios::x_precision.  The  default  value  for  ios::x_precision  is 6.  If ios::uppercase  

is set,  an  uppercase  ″E″  precedes  the  exponent.  Otherwise,  a lowercase  ″e″  

precedes  the  exponent.  

 fixed  

  If  ios::fixed  is  set,  floating  point  values  are  converted  to fixed  notation  with  

the  number  of  digits  after  the  decimal  point  equal  to  the  value  of 

ios::x_precision  (or  6 by  default).  

 If  neither  ios::fixed  nor  ios::scientific  is set,  the  representation  of 

floating-point  values  depends  on  their  values  and  the  number  of  

significant  digits  in  the  representation  equals  ios::x_precision.  

Floating-point  values  are  converted  to  scientific  notation  if the  exponent  

resulting  from  a conversion  to scientific  notation  is less  an  -4  or  greater  

than  or  equal  to the  value  of ios::x_precision.  Otherwise,  floating-point  

values  are  converted  to  fixed  notation.  If  ios::showpoint  is not  set,  trailing  

zeros  are  removed  from  the  result  and  a decimal  point  appears  only  if it is  

followed  by  a digit.  ios::scientific  and  ios::fixed  are  collectively  identified  

by  the  static  member  ios::floatfield.  

 Uppercase  and  Lowercase  

  uppercase  

  If  ios::uppercase  is set,  the  operation  that  inserts  values  uses  an  uppercase  

″E″  for  floating  point  values  in scientific  notation.  In  addition,  the  

operation  that  inserts  values  stores  hexadecimal  digits  ″A″  to ″F″  in  

uppercase  and  places  an  uppercase  ″X″  before  hexadecimal  values  when  

ios::showbase  is set.  If ios::uppercase  is not  set,  a lowercase  ″e″  introduces  

the  exponent  in  floating-point  values,  hexadecimal  digits  ″a″  to  ″f″  are  

stored  in  lowercase,  and  a lowercase  ″x″  is inserted  before  hexadecimal  

values  when  ios::showbase  is set.  

 

Chapter  3. Reference 103



Buffer  Flushing  

  unitbuf  

  If  ios::unitbuf  is set,  ostream::osfx()  performs  a flush  after  each  insertion.  

The  attached  stream  buffer  is  unit  buffered.  

 stdio  

  This  flag  is used  internally  by  sync_with_stdio().  You should  not  use  

ios::stdio  directly.  

Variation  1 

enum   { skipws=01,  

        left=02,  

        right=04,  

        internal=010,  

        dec=020,  

        oct=040,  

        hex=0100,  

        showbase=0200,  

        showpoint=0400,  

        uppercase=01000,  

        showpos=02000,  

        scientific=04000,  

        fixed=010000,  

        unitbuf=020000,  

        stdio=040000  } 

This  is supported  on  

AIX
   

400
   

z/OS
   

Variation  2 

enum   { skipping=01000,  

        tied=02000  } 

This  is supported  on  

AIX
   

400
   

z/OS
  

io_state  

 The  error  state  state  is an  enumeration  that  records  the  errors  that  take  

place  in  the  processing  of  ios  objects.  

 Note:  hardfail  is a flag  used  internally  by  the  I/O  Stream  Library.  Do  not  

use  it.  

open_mode  

 The  elements  of the  open_mode  enumeration  have  the  following  meanings:  

v   ios::app  - open()  performs  a seek  to the  end  of  the  file.  Data  that  is 

written  is  appended  to  the  end  of the  file.  This  value  implies  that  the  file  

is open  for  output.  

v   ios::ate  - open()  performs  a seek  to the  end  of  the  file.  Setting  ios::ate  

does  not  open  the  file  for  input  or  output.  If you  set  ios::ate,  you  should  

explicitly  set  ios::in,  ios::out,  or  both.  

v   ios::bin  - See  ios::binary  below.  

v   ios::binary  - The  file  is  opened  in  binary  mode.  In  the  default  (text)  

mode,  carriage  returns  are  discarded  on  input,  as in  an  end-of-file  (0x1a)  

character  if it is the  last  character  in the  file.  This  means  that  a carriage  

return  without  an  accompanying  line  feed  causes  the  characters  on  

either  side  of the  carriage  return  to become  adjacent.  On  output,  a line  

feed  is  expanded  to a carriage  return  and  line  feed.  If you  specify  

ios::binary,  carriage  returns  and  terminating  end-of-file  characters  are  not  

 

104 C/C++  Legacy Classes



removed  on  input,  and  a line  feed  is not  expanded  to  a carriage  return  

and  line  feed  on  output.  ios::binary  and  ios::bin  provide  identical  

functionality.  

v   ios::in  - The  file  is  opened  for  input.  If  the  file  that  is being  opened  for  

input  does  not  exist,  the  open  operation  will  fail.  ios::noreplace  is  

ignoredif  ios::in  is set.  

v   ios::out  - The  file  is opened  for  output.  

v   ios::trunc  - If  the  file  already  exists,  its  contents  will  be  discarded.  If you  

specify  ios::out  and  neither  ios::ate  nor  ios::app,  you  are  implicitly  

specifying  ios::trunc.  If you  set  ios::trunc,  you  should  explicitly  set  

ios::in,  ios::out,  or  both.  

v   ios::nocreate  - If  the  file  does  not  exist,  the  call  to open()  fails.  

v   ios::noreplace  - If the  file  already  exists  and  ios::out  is et,  the  call  to  

open()  fails.  If ios::out  is not  set,  ios::noreplace  is ignored.
Variation  1 

enum  open_mode  { in=1,  

                 out=2,  

                 ate=4,  

                 app=010,  

                 trunc=020,  

                 nocreate=040,  

                 noreplace=0100,  

                 bin=0200,  

                 binary=bin  } 

This  is  supported  on  

AIX
   

z/OS
   

Variation  2 

enum  open_mode  { in=1,  

                 out=2,  

                 ate=4,  

                 app=010,  

                 trunc=020,  

                 nocreate=040,  

                 noreplace=0100,  

                 bin=0200,  

                 binary=bin,  

                 text=0400  } 

This  is  supported  on  

400
  

seek_dir  

 The  elements  of  the  seek_dir  enumeration  have  the  following  meanings:  

v   beg  - the  beginning  of  the  ultimate  producer  or  consumer  

v   cur  - the  current  position  in  the  ultimate  producer  or  consumer  

v   end  - the  end  of the  ultimate  producer  or  consumer

ios - Inherited Member Functions and Data 

Inherited  Public  Functions  

 None  

Inherited  Public  Data  

 None  

Inherited  Protected  Functions  

 None  

Inherited  Protected  Data  

 None

 

Chapter  3. Reference 105



iostream 

This  class  combines  the  input  capabilities  of the  istream  class  with  the  output  

capabilities  of  the  ostream  class.  It  is the  base  class  for  three  other  classes  that  also  

provide  input  and  output  capabilities:  

v   iostream_withassign  - to  assign  another  stream  (such  as  an  fstream  for  a file)  to  

an  iostream  object.  

v   strstream  - a stream  of characters  stored  in  memory.  

v   fstream  - a stream  that  supports  input  and  output.  

Class  header  file:  iostream.h  

iostream - Hierarchy List 

   ios  

    istream  

    iostream  

    iostream_withassign

iostream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  iostream  class  can  be  constructed  and  destructed.  

~iostream  

public:virtual  ~iostream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  iostream  object.  

iostream  

Overload  1  

public:iostream(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  a single  streambuf  argument  and  creates  an  

iostream  object  that  is attached  to  the  streambuf  object.  The  

constructor  also  initializes  the  format  variables  to  their  defaults.  

Overload  2 

protected:iostream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Protected  contructor.

iostream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

 

106 C/C++  Legacy Classes



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

 istream  

Definition  

Page  

Number  Definition  

Page  

Number  

~istream  111 gcount  112 

get  113 get_complicated  116 

getline  116 ignore  119 

ipfx  133 isfx  134 

istream  112 operator  >> 122 

peek  120 putback  132 

read  120 rs_complicated  121 

seekg  132 sync  133 

tellg  133 

  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 istream  

Definition  

Page  

Number  Definition  

Page  

Number  

do_ipfx  134 eatwhite  122 

istream  112 

 

 

Chapter  3. Reference 107



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

iostream_withassign 

This  class  is derived  from  istream_withassign  and  ostream_withassign.  Use  this  

class  to  assign  another  stream  to  an  iostream  object.  

Class  header  file:  iostream.h  

iostream_withassign - Hierarchy List 

   ios  

    istream  

    iostream  

    iostream_withassign

iostream_withassign - Member Functions and Data by Group 

Constructors & Destructor 

~iostream_withassign  

public:virtual  ~iostream_withassign()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  iostream_withassign  object.  

iostream_withassign  

public:iostream_withassign()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Creates  an  iostream_withassign  object.  It does  not  do  any  initialization  of 

this  object.  

operator  = 

public:iostream_withassign&  operator  =(iostream_withassign&  rhs)  

 

108 C/C++  Legacy Classes



This  is  supported  on  

AIX
   

z/OS
   

 Copy  constructor.

Assignment Operators 

operator  =  

Overload  1  

public:iostream_withassign&  operator  =(streambuf*)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  assignment  operator  takes  a pointer  to a streambuf  object  and  

associates  this  streambuf  object  with  the  iostream_withassign  object  

that  is on  the  left  side  of the  assignment  operator.  

Overload  2 

public:iostream_withassign&  operator  =(ios&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  assignment  operator  takes  a reference  to an  ios  object  and  

associates  the  stream  buffer  attached  to this  ios  object  with  the  

iostream_withassign  object  that  is on  the  left  side  of the  assignment  

operator.

iostream_withassign - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

 iostream  

Definition  

Page  

Number  Definition  

Page  

Number  

~iostream  106 iostream  106
 

 

Chapter  3. Reference 109

|



istream  

Definition  

Page  

Number  Definition  

Page  

Number  

~istream  111 gcount  112 

get  113 get_complicated  116 

getline  116 ignore  119 

ipfx  133 isfx  134 

istream  112 operator  >> 122 

peek  120 putback  132 

read  120 rs_complicated  121 

seekg  132 sync  133 

tellg  133 

  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 istream  

Definition  

Page  

Number  Definition  

Page  

Number  

do_ipfx  134 eatwhite  122 

istream  112 

  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

 iostream  

Definition  

Page  

Number  Definition  

Page  

Number  

iostream  106 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

 

110  C/C++  Legacy  Classes



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

istream 

You can  use  the  istream  class  to  perform  formatted  input,  or  extraction,  from  a 

stream  buffer  using  the  input  operator  >>.  Consider  the  following  statement,  

where  ins  is  a reference  to  an  istream  object  and  x is  a variable  of a built-in  type:  

   ins  >> x; 

The  input  operator  >>  calls  ipfx(0).  If ipfx()  returns  a nonzero  value,  the  input  

operator  extracts  characters  from  the  streambuf  object  that  is  associated  with  ins.  It 

converts  these  characters  to the  type  of  x and  stores  the  result  x. The  input  

operator  sets  ios::failbit  if the  characters  extracted  from  the  stream  buffer  cannot  be  

converted  to  the  type  of  x. If  the  attempt  to extract  characters  fails  because  EOF  is 

encountered,  the  input  operator  sets  ios::eofbit  and  ios::failbit.  If  the  attempt  to  

extract  characters  fails  for  another  reason,  the  input  operator  sets  ios::badbit.  Even  

if an  error  occurs,  the  input  operator  always  returns  ins.  

The  details  of  conversion  depend  on  the  format  state  of the  istream  object  and  the  

type  of  the  variable  x. The  input  operator  may  set  the  width  variable  ios::x_width  

to  0,  but  it does  not  change  anything  else  in  the  format  state.  

The  input  operator  is defined  for  the  following  types:  

v   Arrays  of  character  values  (including  signed  char  and  unsigned  char)  

v   Other  integral  values:  short,  int,  long,  float,  double,  long  double,  and  long  long  

values.  

In  addition,  the  input  operator  is defined  for  streambuf  objects.  

You can  also  define  input  operators  for  your  own  types.  

Class  header  file:  iostream.h  

istream - Hierarchy List 

   ios  

    istream  

    iostream  

    istream_withassign

istream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  istream  class  can  be  constructed  and  destructed.  

 

Chapter  3. Reference 111



~istream  

public:virtual  ~istream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  istream  object.  

istream  

Overload  1  

public:istream(streambuf*,  int  sk,  ostream*  t = 0) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Obsolete.  Do  not  use.  

Overload  2 

public:istream(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  a single  argument,  a pointer  to  a streambuf,  

and  creates  an  istream  object  that  is attached  to  the  streambuf  

object.  The  constructor  also  initializes  the  format  variables  to their  

defaults.  

 Note:  The  other  istream  constructor  declarations  in  iostream.h  are  

obsolete;  do  not  use  them.  

Overload  3 

public:istream(int  size,  char*,  int  sk = 1) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Obsolete.  Do  not  use.  

Overload  4 

public:istream(int  fd,  int sk = 1, ostream*  t = 0) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Obsolete.  Do  not  use.  

Overload  5 

protected:istream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Obsolete.  Do  not  use.

Extract Functions 

You can  use  the  extract  functions  to extract  characters  from  a stream  buffer  as a 

sequence  of bytes.  All  of  these  functions  call  ipfx(1).  They  only  proceed  with  their  

processing  if ipfx(1)  returns  a nonzero  value.  

gcount  

 Returns  the  number  of characters  extracted  from  the  stream  buffer  by  the  

last  call  to  an  unformatted  input  function.  The  input  operator  >>  may  call  

unformatted  input  functions,  and  thus  formatted  input  may  affect  the  

value  returned  by  gcount().  

Overload  1  

public:int  gcount()  

 

112  C/C++  Legacy  Classes



This  is  supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 This  function  returns  an  int  value  for  32-bit  applications.  It 

is not  available  for  64-bit  applications.
Overload  2 

public:long  gcount()  

This  is  supported  on  

AIX
   

z/OS
   

 This  function  returns  a long  value  for  64-bit  applications.  It  is not  

available  for  32-bit  applications.
get  

Overload  1  

public:int  get()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  a single  character  from  the  stream  buffer  attached  to the  

istream  object  and  returns  it. Returns  EOF  if EOF  is  extracted.  

ios::failbit  is never  set.  

Overload  2 

public:istream&  get(char*,  int  lim,  char  delim  = ’\n’)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  delim  is left  in  the  stream  buffer  and  not  

stored  in  the  array.  

v   lim  - 1 characters  are  extracted  without  delim  or  EOF  being  

encountered.

get()  always  stores  a terminating  null  character  in  the  array,  even  if 

it  does  not  extract  any  characters  from  the  stream  buffer.  ios::failbit  

is  set  if EOF  is encountered  before  any  characters  are  stored.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  3 

public:istream&  get(unsigned  char&  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  a single  character  from  the  stream  buffer  attached  to the  

istream  object  and  stores  this  character  in  c. 

Overload  4 

public:istream&  get(signed  char*  b, int  lim,  char  delim  = ’\n’)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter 3. Reference 113

|

|
|

|

|

|

|
|



Extracts  characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  the  byte  array  beginning  at  the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  delim  is left  in  the  stream  buffer  and  not  

stored  in  the  array.  

v   lim  - 1 characters  are  extracted  without  delim  or  EOF  being  

encountered.

get()  always  stores  a terminating  null  character  in  the  array,  even  if 

it does  not  extract  any  characters  from  the  stream  buffer.  ios::failbit  

is  set  if EOF  is encountered  before  any  characters  are  stored.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  5 

public:istream&  get(streambuf&  sb,  char  delim  = ’\n’)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  the  streambuf,  sb.  The  default  value  of 

the  delim  argument  is ’\n’.  Extraction  stops  when  any  of the  

following  conditions  is true: 

v   an  EOF  character  is encountered  

v   an  attempt  to store  a character  in  sb  fails  

v   ios::failbit  is set  in the  error  state  of  the  istream  object  

v   delim  is encountered.  delim  is left  in  the  stream  buffer  attached  

to  the  istream  object.
Overload  6 

public:istream&  get(unsigned  char*  b, long  lim,  char  delim  = ’\n’)  

This  is supported  on  

AIX
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  the  byte  array  beginning  at  the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  delim  is left  in  the  stream  buffer  and  not  

stored  in  the  array.  

v   lim  - 1 characters  are  extracted  without  delim  or  EOF  being  

encountered.

get()  always  stores  a terminating  null  character  in  the  array,  even  if 

it does  not  extract  any  characters  from  the  stream  buffer.  ios::failbit  

is  set  if EOF  is encountered  before  any  characters  are  stored.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  7 

public:istream&  get(char&  c) 

 

114  C/C++  Legacy  Classes

|

|
|

|



This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  a single  character  from  the  stream  buffer  attached  to the  

istream  object  and  stores  this  character  in  c. 

Overload  8 

public:istream&  get(signed  char&  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  a single  character  from  the  stream  buffer  attached  to the  

istream  object  and  stores  this  character  in  c. 

Overload  9 

public:istream&  get(wchar_t&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  a single  wchar_t  character  from  the  stream  buffer  attached  

to  the  istream  object  and  stores  this  character  in  c.  

Overload  10  

public:istream&  get(unsigned  char*  b, int  lim,  char  delim  = ’\n’)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  delim  is left  in  the  stream  buffer  and  not  

stored  in  the  array.  

v   lim  - 1 characters  are  extracted  without  delim  or  EOF  being  

encountered.

get()  always  stores  a terminating  null  character  in  the  array,  even  if 

it  does  not  extract  any  characters  from  the  stream  buffer.  ios::failbit  

is  set  if EOF  is encountered  before  any  characters  are  stored.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  11 

public:istream&  get(signed  char*  b, long  lim,  char  delim  = ’\n’)  

This  is  supported  on  

AIX
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  delim  is left  in  the  stream  buffer  and  not  

stored  in  the  array.  

v   lim  - 1 characters  are  extracted  without  delim  or  EOF  being  

encountered.

 

Chapter 3. Reference 115

|

|
|

|



get()  always  stores  a terminating  null  character  in  the  array,  even  if 

it does  not  extract  any  characters  from  the  stream  buffer.  ios::failbit  

is  set  if EOF  is encountered  before  any  characters  are  stored.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  12  

public:istream&  get(char*,  long  lim,  char  delim  = ’\n’)  

This  is supported  on  

AIX
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  the  byte  array  beginning  at  the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  delim  is left  in  the  stream  buffer  and  not  

stored  in  the  array.  

v   lim  - 1 characters  are  extracted  without  delim  or  EOF  being  

encountered.

get()  always  stores  a terminating  null  character  in  the  array,  even  if 

it does  not  extract  any  characters  from  the  stream  buffer.  ios::failbit  

is  set  if EOF  is encountered  before  any  characters  are  stored.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.
get_complicated  

Overload  1  

public:istream&  get_complicated(signed  char&  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.  

Overload  2 

public:istream&  get_complicated(unsigned  char&  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.  

Overload  3 

public:istream&  get_complicated(char&  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.
getline  

Overload  1  

public:istream&  

  getline(  unsigned  char*  b, 

           int  lim,  

           char  delim  = ’\n’  ) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 

116  C/C++  Legacy  Classes

|



Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  getline()  extracts  delim  from  the  stream  

buffer,  but  it does  not  store  delim  in  the  array.  

v   lim  - 1 characters  are  extracted  before  delim  or  EOF  is 

encountered.

getline()  always  stores  a terminating  null  character  in  the  array,  

even  if it  does  not  extract  any  characters  from  the  stream  buffer.  

ios::failbit  is set  if EOF  is encountered  before  any  characters  are  

stored.  

 getline()  is  like  get()  with  three  arguments,  except  that  get()  does  

not  extract  the  delim  character  from  the  stream  buffer,  while  

getline()  does.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  2 

public:istream&  

  getline(  unsigned  char*  b, 

           long  lim,  

           char  delim  = ’\n’  ) 

This  is  supported  on  

AIX
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  getline()  extracts  delim  from  the  stream  

buffer,  but  it does  not  store  delim  in  the  array.  

v   lim  - 1 characters  are  extracted  before  delim  or  EOF  is 

encountered.

getline()  always  stores  a terminating  null  character  in  the  array,  

even  if it  does  not  extract  any  characters  from  the  stream  buffer.  

ios::failbit  is set  if EOF  is encountered  before  any  characters  are  

stored.  

 getline()  is  like  get()  with  three  arguments,  except  that  get()  does  

not  extract  the  delim  character  from  the  stream  buffer,  while  

getline()  does.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  3 

public:istream&  getline(char*  b, int  lim,  char  delim  = ’\n’)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter 3. Reference 117

|

|
|

|



Extracts  characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  the  byte  array  beginning  at  the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  getline()  extracts  delim  from  the  stream  

buffer,  but  it does  not  store  delim  in the  array.  

v   lim  - 1 characters  are  extracted  before  delim  or  EOF  is 

encountered.

getline()  always  stores  a terminating  null  character  in  the  array,  

even  if it does  not  extract  any  characters  from  the  stream  buffer.  

ios::failbit  is set  if EOF  is encountered  before  any  characters  are  

stored.  

 getline()  is like  get()  with  three  arguments,  except  that  get()  does  

not  extract  the  delim  character  from  the  stream  buffer,  while  

getline()  does.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  4 

public:istream&  getline(char*  b, long  lim,  char  delim  = ’\n’)  

This  is supported  on  

AIX
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  the  byte  array  beginning  at  the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  getline()  extracts  delim  from  the  stream  

buffer,  but  it does  not  store  delim  in the  array.  

v   lim  - 1 characters  are  extracted  before  delim  or  EOF  is 

encountered.

getline()  always  stores  a terminating  null  character  in  the  array,  

even  if it does  not  extract  any  characters  from  the  stream  buffer.  

ios::failbit  is set  if EOF  is encountered  before  any  characters  are  

stored.  

 getline()  is like  get()  with  three  arguments,  except  that  get()  does  

not  extract  the  delim  character  from  the  stream  buffer,  while  

getline()  does.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  5 

public:istream&  

  getline(  signed  char*  b, 

           int  lim,  

           char  delim  = ’\n’  ) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 

118  C/C++  Legacy  Classes

|

|
|

|



Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  getline()  extracts  delim  from  the  stream  

buffer,  but  it does  not  store  delim  in  the  array.  

v   lim  - 1 characters  are  extracted  before  delim  or  EOF  is 

encountered.

getline()  always  stores  a terminating  null  character  in  the  array,  

even  if it  does  not  extract  any  characters  from  the  stream  buffer.  

ios::failbit  is set  if EOF  is encountered  before  any  characters  are  

stored.  

 getline()  is  like  get()  with  three  arguments,  except  that  get()  does  

not  extract  the  delim  character  from  the  stream  buffer,  while  

getline()  does.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  6 

public:istream&  

  getline(  signed  char*  b, 

           long  lim,  

           char  delim  = ’\n’  ) 

This  is  supported  on  

AIX
   

z/OS
   

 Extracts  characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in the  byte  array  beginning  at the  location  

pointed  to  by  the  first  argument  and  extending  for  lim  bytes.  The  

default  value  of  the  delim  argument  is ’\n’.  Extraction  stops  when  

either  of the  following  conditions  is  true: 

v   delim  or  EOF  is encountered  before  lim  - 1 characters  have  been  

stored  in  the  array.  getline()  extracts  delim  from  the  stream  

buffer,  but  it does  not  store  delim  in  the  array.  

v   lim  - 1 characters  are  extracted  before  delim  or  EOF  is 

encountered.

getline()  always  stores  a terminating  null  character  in  the  array,  

even  if it  does  not  extract  any  characters  from  the  stream  buffer.  

ios::failbit  is set  if EOF  is encountered  before  any  characters  are  

stored.  

 getline()  is  like  get()  with  three  arguments,  except  that  get()  does  

not  extract  the  delim  character  from  the  stream  buffer,  while  

getline()  does.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.
ignore  

public:istream&  ignore(int  n = 1,  int  delim  = EOF)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter 3. Reference 119

|

|
|

|



Extracts  up  to  n characters  from  the  stream  buffer  attached  to the  istream  

object  and  discards  them.  ignore()  will  extract  fewer  than  n characters  if it 

encounters  delim  or  EOF. 

peek  

public:int  peek()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 peek()  calls  ipfx(1).  If  ipfx()  returns  0,  or  if no  more  input  is available  from  

the  ultimate  producer,  peek()  returns  EOF. Otherwise,  it  returns  the  next  

character  in  the  stream  buffer  without  extracting  the  character.  

read  

Overload  1  

public:istream&  read(char*  s, long  n) 

This  is supported  on  

AIX
   

z/OS
   

 Extracts  n characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  an  array  beginning  at the  position  

pointed  to  by  s. If EOF  is encountered  before  read()  extracts  n 

characters,  read()  sets  the  ios::failbit  in  the  error  state  of  the  istream  

object.  You can  determine  the  number  of  characters  that  read()  

extracted  by  calling  gcount()  immediately  after  the  call  to read().  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  2 

public:istream&  read(signed  char*  s, int  n) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Extracts  n characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  an  array  beginning  at the  position  

pointed  to  by  s. If EOF  is encountered  before  read()  extracts  n 

characters,  read()  sets  the  ios::failbit  in  the  error  state  of  the  istream  

object.  You can  determine  the  number  of  characters  that  read()  

extracted  by  calling  gcount()  immediately  after  the  call  to read().  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  3 

public:istream&  read(unsigned  char*  s,  long  n) 

This  is supported  on  

AIX
   

z/OS
   

 Extracts  n characters  from  the  stream  buffer  attached  to  the  istream  

object  and  stores  them  in  an  array  beginning  at the  position  

pointed  to  by  s. If EOF  is encountered  before  read()  extracts  n 

characters,  read()  sets  the  ios::failbit  in  the  error  state  of  the  istream  

object.  You can  determine  the  number  of  characters  that  read()  

extracted  by  calling  gcount()  immediately  after  the  call  to read().  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

 

120 C/C++  Legacy Classes

|

|

|
|

|



Overload  4 

public:istream&  read(unsigned  char*  s, int n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  n characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in an  array  beginning  at the  position  

pointed  to  by  s. If EOF  is encountered  before  read()  extracts  n 

characters,  read()  sets  the  ios::failbit  in the  error  state  of  the  istream  

object.  You can  determine  the  number  of  characters  that  read()  

extracted  by  calling  gcount()  immediately  after  the  call  to  read().  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  5 

public:istream&  read(signed  char*  s, long  n) 

This  is  supported  on  

AIX
   

z/OS
   

 Extracts  n characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in an  array  beginning  at the  position  

pointed  to  by  s. If EOF  is encountered  before  read()  extracts  n 

characters,  read()  sets  the  ios::failbit  in the  error  state  of  the  istream  

object.  You can  determine  the  number  of  characters  that  read()  

extracted  by  calling  gcount()  immediately  after  the  call  to  read().  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  6 

public:istream&  read(char*  s, int  n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  n characters  from  the  stream  buffer  attached  to the  istream  

object  and  stores  them  in an  array  beginning  at the  position  

pointed  to  by  s. If EOF  is encountered  before  read()  extracts  n 

characters,  read()  sets  the  ios::failbit  in the  error  state  of  the  istream  

object.  You can  determine  the  number  of  characters  that  read()  

extracted  by  calling  gcount()  immediately  after  the  call  to  read().  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
rs_complicated  

Overload  1  

public:istream&  rs_complicated(signed  char&  c)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.  

Overload  2 

public:istream&  rs_complicated(char&  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 121

|

|
|

|

|

|
|



Internal  function.  Do  not  use.  

Overload  3 

public:istream&  rs_complicated(unsigned  char&  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.
eatwhite  

protected:void  eatwhite()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.

Input Operators 

Input  operators  supported  by  istream  objects.  

operator  >>  

Overload  1  

public:istream&  operator  >>(float&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  converts  characters  from  the  stream  buffer  

attached  to  the  input  stream  according  to the  C++  lexical  

conventions.  

 The  following  conversions  occur  for  certain  string  values:  

v   If  the  value  consists  of the  character  strings  ″inf″  or  ″infinity″  in 

any  combination  of  uppercase  and  lowercase  letters,  the  string  is 

converted  to  the  approprate  type’s  representation  of infinity.  

v   If  the  value  consists  of the  character  string  ″nan″ in  any  

combination  of uppercase  and  lowercase  letters,  the  string  is  

converted  to  the  appropriate  type’s  representation  of  a NaN.

Note  that  if you  use  thse  string  values  as input  in  a program  

compiled  with  z/OS  C/C++,  the  input  operator  will  not  recognize  

them  as  floating  point  numbers  and  will  set  ios::badbit  in  the  

stream’s  error  state.  

 The  resulting  value  is stored  in  the  reference  location  provided.  

The  input  operator  sets  ios::failbit  if no  digits  are  available  in the  

stream  buffer  or  if the  digits  that  are  available  do  not  begin  a 

floating-point  number.  

Overload  2 

public:istream&  operator  >>(char*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  stores  characters  from  the  stream  buffer  

attached  to  the  input  stream  in  the  array  pointed  to  by  the  

argument.  The  input  operator  stores  characters  until  a white-space  

character  is found.  This  white-space  character  is left  in  the  stream  

buffer,  and  the  extraction  stops.  If  ios::x_width  does  not  equal  0, a 

maximum  of  ios::x_width  - 1 characters  are  extracted.  The  input  

operator  calls  width(0)  to  reset  the  ios::x_width  to  0. 

 

122 C/C++  Legacy Classes



The  input  operator  always  stores  a terminating  null  character  in  

the  array,  even  if an  error  occurs.  

Overload  3 

public:istream&  operator  >>(int&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of  the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is no  overflow  

detection  on  conversion  of  integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of  the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a digit  from  0 to  7)  is encountered.  If 

ios::oct  is set  and  a signed  value  is encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a  digit  from  0 to  9)  is  encountered.  

v   ios::hex  - the  characters  are  converted  to an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a  digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or  lower  case)  is encountered.  If ios::hex  

is set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of  these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to  an  octal  value.  

v   If neither  of  these  cases  is  true, the  characters  are  converted  to  a 

decimal  value.

If  no  digits  are  available  in  the  stream  buffer  (other  than  the  ″0″  in 

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of  the  input  stream.  

Overload  4 

public:istream&  operator  >>(long  double&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  converts  characters  from  the  stream  buffer  

attached  to  the  input  stream  according  to the  C++  lexical  

conventions.  

 The  following  conversions  occur  for  certain  string  values:  

 

Chapter  3. Reference 123



v   If  the  value  consists  of the  character  strings  ″inf″  or  ″infinity″  in 

any  combination  of  uppercase  and  lowercase  letters,  the  string  is 

converted  to  the  approprate  type’s  representation  of infinity.  

v   If  the  value  consists  of the  character  string  ″nan″ in  any  

combination  of uppercase  and  lowercase  letters,  the  string  is  

converted  to  the  appropriate  type’s  representation  of  a NaN.

Note  that  if you  use  thse  string  values  as input  in  a program  

compiled  with  z/OS  C/C++,  the  input  operator  will  not  recognize  

them  as  floating  point  numbers  and  will  set  ios::badbit  in  the  

stream’s  error  state.  

 The  resulting  value  is stored  in  the  reference  location  provided.  

The  input  operator  sets  ios::failbit  if no  digits  are  available  in the  

stream  buffer  or  if the  digits  that  are  available  do  not  begin  a 

floating-point  number.  

Overload  5 

public:istream&  operator  >>(ios  & ( * f ) ( ios & )) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  following  built-in  manipulators  are  accepted  by  this  input  

operator:  

 

       ios&    dec(ios&)  

       ios&    hex(ios&)  

       ios&    oct(ios  &) 

These  manipulators  have  a specific  effect  on  an  istream  object  

beyond  extracting  their  own  values.  For  example,  If  ins  is a 

reference  to  an  istream  object,  then  this  statement  sets  ios::dec:  

 

       ins  >> dec;  

Overload  6 

public:istream&  operator  >>(long  long&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is  no  overflow  

detection  on  conversion  of integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a  digit  from  0 to  7) is  encountered.  If 

ios::oct  is set  and  a signed  value  is  encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a digit  from  0 to  9)  is encountered.  

v   ios::hex  - the  characters  are  converted  to  an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

 

124 C/C++  Legacy Classes



that  is not  a hexadecimal  digit  (a  digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or  lower  case)  is encountered.  If ios::hex  

is set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of  these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to  an  octal  value.  

v   If neither  of  these  cases  is  true, the  characters  are  converted  to  a 

decimal  value.

If  no  digits  are  available  in  the  stream  buffer  (other  than  the  ″0″  in 

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of  the  input  stream.  

 Note:  The  support  for  long  long  is controlled  by  _LONG_LONG,  

__EXTENDED__,  or  the  -q(no)longlong  option.  

Overload  7 

public:istream&  operator  >>(long&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of  the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is no  overflow  

detection  on  conversion  of  integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of  the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a digit  from  0 to  7)  is encountered.  If 

ios::oct  is set  and  a signed  value  is encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a  digit  from  0 to  9)  is  encountered.  

v   ios::hex  - the  characters  are  converted  to an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a  digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or  lower  case)  is encountered.  If ios::hex  

is set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of  these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

 

Chapter  3. Reference 125



v   If  the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to an  octal  value.  

v   If  neither  of  these  cases  is true, the  characters  are  converted  to a 

decimal  value.

If  no  digits  are  available  in the  stream  buffer  (other  than  the  ″0″  in  

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of the  input  stream.  

Overload  8 

public:istream&  operator  >>(short&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is  no  overflow  

detection  on  conversion  of integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a  digit  from  0 to  7) is  encountered.  If 

ios::oct  is set  and  a signed  value  is  encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a digit  from  0 to  9)  is encountered.  

v   ios::hex  - the  characters  are  converted  to  an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or lower  case)  is encountered.  If ios::hex  

is  set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If  these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If  the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to an  octal  value.  

v   If  neither  of  these  cases  is true, the  characters  are  converted  to a 

decimal  value.

If  no  digits  are  available  in the  stream  buffer  (other  than  the  ″0″  in  

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of the  input  stream.  

Overload  9 

public:istream&  operator  >>(signed  char&  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 

126 C/C++  Legacy Classes



The  input  operator  extracts  a character  from  the  stream  buffer  

attached  to  the  input  stream  and  stores  it  in c. 

Overload  10  

public:istream&  operator  >>(signed  char*)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  stores  characters  from  the  stream  buffer  

attached  to  the  input  stream  in  the  array  pointed  to  by  the  

argument.  The  input  operator  stores  characters  until  a white-space  

character  is found.  This  white-space  character  is left  in  the  stream  

buffer,  and  the  extraction  stops.  If ios::x_width  does  not  equal  0, a 

maximum  of ios::x_width  - 1 characters  are  extracted.  The  input  

operator  calls  width(0)  to  reset  the  ios::x_width  to 0.  

 The  input  operator  always  stores  a terminating  null  character  in  

the  array,  even  if an  error  occurs.  

Overload  11 

public:istream&  operator  >>(unsigned  char*)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  stores  characters  from  the  stream  buffer  

attached  to  the  input  stream  in  the  array  pointed  to  by  the  

argument.  The  input  operator  stores  characters  until  a white-space  

character  is found.  This  white-space  character  is left  in  the  stream  

buffer,  and  the  extraction  stops.  If ios::x_width  does  not  equal  0, a 

maximum  of ios::x_width  - 1 characters  are  extracted.  The  input  

operator  calls  width(0)  to  reset  the  ios::x_width  to 0.  

 The  input  operator  always  stores  a terminating  null  character  in  

the  array,  even  if an  error  occurs.  

Overload  12  

public:istream&  operator  >>(streambuf*)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 For  pointers  to  streambuf  objects,  the  input  operator  calls  ipfx(0).  If 

ipfx(0)  returns  a nonzero  value,  the  input  operator  extracts  

characters  from  the  stream  buffer  attached  to  the  istream  object  and  

inserts  them  in  the  streambuf.  Extraction  stops  when  an  EOF  

character  is encountered.  

 The  input  operator  always  returns  a reference  to  the  istream  object.  

Overload  13  

public:istream&  operator  >>(unsigned  int&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of  the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is no  overflow  

detection  on  conversion  of  integral  types.  

 

Chapter  3. Reference 127



The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a  digit  from  0 to  7) is  encountered.  If 

ios::oct  is set  and  a signed  value  is  encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a digit  from  0 to  9)  is encountered.  

v   ios::hex  - the  characters  are  converted  to  an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or lower  case)  is encountered.  If ios::hex  

is  set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If  these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If  the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to an  octal  value.  

v   If  neither  of  these  cases  is true, the  characters  are  converted  to a 

decimal  value.

If  no  digits  are  available  in the  stream  buffer  (other  than  the  ″0″  in  

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of the  input  stream.  

Overload  14  

public:istream&  operator  >>(unsigned  long  long&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is  no  overflow  

detection  on  conversion  of integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a  digit  from  0 to  7) is  encountered.  If 

ios::oct  is set  and  a signed  value  is  encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a digit  from  0 to  9)  is encountered.  

 

128 C/C++  Legacy Classes



v   ios::hex  - the  characters  are  converted  to an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a  digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or  lower  case)  is encountered.  If ios::hex  

is set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of  these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to  an  octal  value.  

v   If neither  of  these  cases  is  true, the  characters  are  converted  to  a 

decimal  value.

If  no  digits  are  available  in  the  stream  buffer  (other  than  the  ″0″  in 

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of  the  input  stream.  

 Note:  The  support  for  long  long  is controlled  by  _LONG_LONG,  

__EXTENDED__,  or  the  -q(no)longlong  option.  

Overload  15  

public:istream&  operator  >>(unsigned  long&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of  the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is no  overflow  

detection  on  conversion  of  integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of  the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a digit  from  0 to  7)  is encountered.  If 

ios::oct  is set  and  a signed  value  is encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a  digit  from  0 to  9)  is  encountered.  

v   ios::hex  - the  characters  are  converted  to an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a  digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or  lower  case)  is encountered.  If ios::hex  

is set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of  these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

 

Chapter  3. Reference 129



v   If  these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If  the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to an  octal  value.  

v   If  neither  of  these  cases  is true, the  characters  are  converted  to a 

decimal  value.

If  no  digits  are  available  in the  stream  buffer  (other  than  the  ″0″  in  

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of the  input  stream.  

Overload  16  

public:istream&  operator  >>(unsigned  short&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  characters  from  the  stream  buffer  

associated  with  the  input  stream  and  converts  them  according  to  

the  format  state  of the  input  stream.  The  converted  characters  are  

then  store  in  the  reference  location  provided.  There  is  no  overflow  

detection  on  conversion  of integral  types.  

 The  first  character  extracted  from  the  stream  buffer  may  be  a sign  

(+  or  -).  The  subsequent  characters  are  converted  until  a nondigit  

character  is encountered.  This  nondigit  character  is left  in  the  

stream  buffer.  Which  characters  are  treated  as  digits  depends  on  

the  setting  of the  following  format  flags:  

v   ios::oct  - the  characters  are  converted  to  an  octal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  an  octal  digit  (a  digit  from  0 to  7) is  encountered.  If 

ios::oct  is set  and  a signed  value  is  encountered,  the  value  is 

converted  into  a decimal  value.  

v   ios::dec  - the  characters  are  converted  to  a decimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a decimal  digit  (a digit  from  0 to  9)  is encountered.  

v   ios::hex  - the  characters  are  converted  to  an  hexadecimal  value.  

Characters  are  extracted  from  the  stream  buffer  until  a character  

that  is not  a hexadecimal  digit  (a digit  from  0 to  0 or  a letter  

from  ″A″  to  ″F″,  upper  or lower  case)  is encountered.  If ios::hex  

is  set  and  a signed  value  is encountered,  the  value  is converted  

into  a decimal  value.

If  none  of these  format  flags  is set,  the  characters  are  converted  

according  to  the  C++  lexical  conventions.  This  conversion  depends  

on  the  characters  that  follow  the  optional  sign:  

v   If  these  characters  are  ″0x″  or  ″0X″,  the  subsequent  characters  are  

converted  to  a hexadecimal  value.  

v   If  the  first  character  is ″0″  and  the  second  character  is not  a ″x″  

or  ″X″,  the  subsequent  characters  are  converted  to an  octal  value.  

v   If  neither  of  these  cases  is true, the  characters  are  converted  to a 

decimal  value.

If  no  digits  are  available  in the  stream  buffer  (other  than  the  ″0″  in  

″0X″  or  ″0x″  preceding  a hexadecimal  value),  the  input  operator  

sets  ios::failbit  in  the  error  state  of the  input  stream.  

Overload  17  

public:istream&  operator  >>(wchar_t&)  

 

130 C/C++  Legacy Classes



This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  a wchar_t  character  from  the  stream  

buffer  attached  to  the  input  stream  and  stores  it in  the  reference  

location  provided.  If ios::skipws  is set,  the  input  operator  skips  

leading  wchar_t  spaces  as  well  as  leading  char  white  spaces.  

Overload  18  

public:istream&  operator  >>(wchar_t*)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  stores  characters  from  the  stream  buffer  

attached  to  the  input  stream  in  the  array  pointed  to  by  the  

argument.  The  input  operator  stores  characters  until  a white-space  

character  or  a wchar_t  blank  is found.  If the  terminating  character  

is  a white-space  character,  it is left  in the  stream  buffer.  If it  is a 

wchar_t  blank,  it is discarded  to avoid  returning  two  bytes  to  the  

input  stream.  

 For  wchar_t*  arrays,  if ios::x_width  does  not  equal  0, a maximum  

of  ios::x_width  - 1 characters  (at  2 bytes  each)  are  extracted.  A 

2-character  space  is reserved  for  the  wchar_t  terminating  null  

character.  

 The  input  operator  resets  ios::x_width  to  0. 

 The  input  operator  always  stores  a terminating  null  character  in  

the  array,  even  if an  error  occurs.  For  arrays  of  wchar_t*,  this  

terminating  null  character  is a wchar_t  terminating  null  character.  

Overload  19  

public:istream&  operator  >>(unsigned  char&  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  a character  from  the  stream  buffer  

attached  to  the  input  stream  and  stores  it  in c. 

Overload  20  

public:istream&  operator  >>(istream  & ( * f ) ( istream  & )) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  following  built-in  manipulators  are  accepted  by  this  input  

operator:  

 

       istream&    ws(istream&)  

These  manipulators  have  a specific  effect  on  an  istream  object  

beyond  extracting  their  own  values.  For  example,  If ins  is a 

reference  to  an  istream  object,  then  this  statement  extracts  

white-space  characters  from  the  stream  buffer  attached  to ins:  

 

       ins >> ws;  

Overload  21  

public:istream&  operator  >>(double&)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 131



The  input  operator  converts  characters  from  the  stream  buffer  

attached  to  the  input  stream  according  to the  C++  lexical  

conventions.  

 The  following  conversions  occur  for  certain  string  values:  

v   If  the  value  consists  of the  character  strings  ″inf″  or  ″infinity″  in 

any  combination  of  uppercase  and  lowercase  letters,  the  string  is 

converted  to  the  approprate  type’s  representation  of infinity.  

v   If  the  value  consists  of the  character  string  ″nan″ in  any  

combination  of uppercase  and  lowercase  letters,  the  string  is  

converted  to  the  appropriate  type’s  representation  of  a NaN.

Note  that  if you  use  thse  string  values  as input  in  a program  

compiled  with  z/OS  C/C++,  the  input  operator  will  not  recognize  

them  as  floating  point  numbers  and  will  set  ios::badbit  in  the  

stream’s  error  state.  

 The  resulting  value  is stored  in  the  reference  location  provided.  

The  input  operator  sets  ios::failbit  if no  digits  are  available  in the  

stream  buffer  or  if the  digits  that  are  available  do  not  begin  a 

floating-point  number.  

Overload  22  

public:istream&  operator  >>(char&  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  input  operator  extracts  a character  from  the  stream  buffer  

attached  to  the  input  stream  and  stores  it  in  c.

Positioning Functions 

Functions  that  work  with  the  get  pointer  of  the  ultimate  producer.  

putback  

public:istream&  putback(char  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 putback()  attempts  to  put  an  extracted  character  back  into  the  stream  

buffer.  c must  equal  the  character  before  the  get  pointer  of  the  stream  

buffer.  Unless  some  other  activity  is modifying  the  stream  buffer,  this  is the  

last  character  extracted  from  the  stream  buffer.  If c is  not  equal  to  the  

character  before  the  get  pointer,  the  result  of  putback()  is undefined,  and  

the  error  state  of  the  input  stream  may  be  set.  putback()  does  not  call  

ipfx(),  but  if the  error  state  of  the  input  stream  is nonzero,  putback()  

returns  without  putting  back  the  character  or  setting  the  error  state.  

seekg  

Overload  1  

public:istream&  seekg(streampos  p)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  get  pointer  to  the  position  p.  

 If  you  attempt  to set  the  get  pointer  to  a position  that  is not  valid,  

seekg()  sets  ios::badbit.  

Overload  2 

public:istream&  seekg(streamoff  o,  ios::seek_dir  d) 

 

132 C/C++  Legacy Classes



This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  get  pointer  to  the  position  specified  by  d with  the  offset  o.  

The  argument  d can  have  the  following  values:  

v   ios::beg  - the  beginning  of  the  stream  

v   ios::cur  - the  current  position  of the  get  pointer  

v   ios::end  - the  end  of  the  stream

If  you  attempt  to set  the  get  pointer  to  a position  that  is not  valid,  

seekg()  sets  ios::badbit.
sync  

public:int  sync()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Establishes  consistency  between  the  ultimate  producer  and  the  stream  

buffer  attached  to the  input  stream.  sync()  calls  rdbuf()->sync(),  which  is a 

virtual  function,  so  the  details  of its  operation  depend  on  the  way  the  

function  is defined  in a given  derived  class.  If  an  error  occurs,  sync()  

returns  EOF. 

tellg  

public:streampos  tellg()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  current  position  of the  get  pointer  of  the  ultimate  producer.

Prefix and Suffix Functions 

Functions  that  are  called  either  before  or  after  extracting  characters  from  the  

ultimate  producer.  

ipfx  

 Checks  the  stream  buffer  attached  to  an  istream  object  to  determine  if it is 

capable  of  satisfying  requests  for  characters.  It  returns  a nonzero  value  if 

the  stream  buffer  is ready,  and  0 if it is not.  

 The  formatted  input  operator  calls  ipfx(0),  while  the  unformatted  input  

functions  call  ipfx(1).  

 If  the  error  state  of  the  istream  object  is nonzero,  ipfx()  returns  0.  

Otherwise,  the  stream  buffer  attached  to  the  istream  object  is flushed  if 

either  of  the  following  conditions  is true: 

v   noskipws  has  a value  of 0.  The  number  of characters  available  in  the  

stream  buffer  is fewer  than  the  value  of noskipws.

If  ios::skipws  is set  in  the  format  state  of  the  istream  object  and  noskipws  

has  a value  of 0,  leading  white-space  characters  are  extracted  from  the  

stream  buffer  and  discarded.  If ios::hardfail  is set  or  EOF  is encountered,  

ipfx()  returns  0. Otherwise,  it returns  a nonzero  value.  

Overload  1  

public:int  ipfx(int  noskipws  = 0) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 This  function  accepts  an  int  value  for  32-bit  applications.  It  

is not  available  for  64-bit  applications.

 

Chapter  3. Reference 133

|

|
|



Overload  2 

public:int  ipfx(long  noskipws  = 0) 

This  is supported  on  

AIX
   

z/OS
   

 This  function  accepts  a long  value  for  64-bit  applications.  It  is not  

available  for  32-bit  applications.
isfx  

public:void  isfx()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.
do_ipfx  

Overload  1  

protected:int  do_ipfx(long  noskipws)  

This  is supported  on  

AIX
   

z/OS
   

 Internal  function.  Do  not  use.  

 This  function  is available  for  64-bit  applications.  It accepts  a long  

argument.  

Overload  2 

protected:int  do_ipfx(int  noskipws)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It  accepts  

an  int  argument.

istream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
 

 

134 C/C++  Legacy Classes

|

|

|

|
|



Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

istream_withassign 

Use  this  class  to  assign  another  stream  to  an  istream  object.  

Class  header  file:  iostream.h  

istream_withassign - Hierarchy List 

   ios  

    istream  

    istream_withassign

istream_withassign - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  istream_withassign  class  can  be  constructed  and  destructed.  They  

can  also  be  copied.  

~istream_withassign  

public:virtual  ~istream_withassign()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 135



Destructs  an  ostream_withassign  object.  

istream_withassign  

public:istream_withassign()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Creates  an  istream_withassign  object.  It  does  not  do  any  initialization  of 

this  object.  

operator  = 

public:istream_withassign&  operator  =(istream_withassign&  rhs)  

This  is supported  on  

AIX
   

 The  copy  constructor.

Assignment Operator 

Assignment  operators  for  istream_withassign.  

operator  = 

Overload  1  

public:istream_withassign&  operator  =(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  assignment  operator  takes  a pointer  to a streambuf  object  as  

its  argument.  It  associates  this  streambuf  object  with  the  

istream_withassign  object  that  is on  the  left  side  of  the  assignment  

operator.  

Overload  2 

public:istream_withassign&  operator  =(istream&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  assignment  operator  takes  an  istream  objects  as its  argument.  

It associates  the  stream  buffer  attached  to  the  input  stream  with  the  

istream_withassign  object  that  is on  the  left  side  of  the  assignment  

operator.

istream_withassign - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

 

136 C/C++  Legacy Classes



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

tie  100 unsetf  97 

width  97 xalloc  101
  

 istream  

Definition  

Page  

Number  Definition  

Page  

Number  

~istream  111 gcount  112 

get  113 get_complicated  116 

getline  116 ignore  119 

ipfx  133 isfx  134 

istream  112 operator  >> 122 

peek  120 putback  132 

read  120 rs_complicated  121 

seekg  132 sync  133 

tellg  133 

  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 istream  

Definition  

Page  

Number  Definition  

Page  

Number  

do_ipfx  134 eatwhite  122 

istream  112 

  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

 

 

Chapter  3. Reference 137



Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

istrstream 

istrstream  is  the  class  that  specializes  istream  to  use  a strstreambuf  for  extraction  

from  arrays  of  characters  in  memory.  You can  create  an  istrstream  object  by  

associating  the  object  with  a previously  allocated  array  of  characters.  You can  then  

read  input  from  it and  apply  other  operations  to  it just  as  you  would  to  another  

type  of  stream.  

Class  header  file:  strstream.h  

istrstream - Hierarchy List 

   ios  

    strstreambase  

    istrstream

istrstream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  istrstream  class  can  be  constructed  and  destructed.  

~istrstream  

public:~istrstream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  istrstream  destructor  frees  space  that  was  allocated  by  the  istrstream  

constructor.  

istrstream  

Overload  1  

public:istrstream(const  char*  str)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  null-terminated  string  that  is pointed  to by  str. You can  use  the  

istream::seekg()  function  to reposition  the  get  pointer  in  this  string.  

Overload  2 

public:istrstream(const  signed  char*  str)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

138 C/C++  Legacy Classes



This  constructor  specifies  that  characters  should  be  extracted  from  

the  null-terminated  string  that  is pointed  to by  str. You can  use  the  

istream::seekg()  function  to reposition  the  get  pointer  in  this  string.  

Overload  3 

public:istrstream(char*  str,  long  size)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  4 

public:istrstream(signed  char*  str,  long  size)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  5 

public:istrstream(const  signed  char*  str,  int  size)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  6 

public:istrstream(const  signed  char*  str,  long  size)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  7 

public:istrstream(const  unsigned  char*  str)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 139

|

|

|

|
|

|



This  constructor  specifies  that  characters  should  be  extracted  from  

the  null-terminated  string  that  is pointed  to by  str. You can  use  the  

istream::seekg()  function  to reposition  the  get  pointer  in  this  string.  

Overload  8 

public:istrstream(const  unsigned  char*  str,  long  size)  

This  is supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of  bytes  that  starts  at  the  position  pointed  to by  str  and  

has  a length  of  size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in this  array.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  9 

public:istrstream(const  unsigned  char*  str,  int size)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of  bytes  that  starts  at  the  position  pointed  to by  str  and  

has  a length  of  size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  10  

public:istrstream(const  char*  str,  int  size)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of  bytes  that  starts  at  the  position  pointed  to by  str  and  

has  a length  of  size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  11 

public:istrstream(signed  char*  str)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  null-terminated  string  that  is pointed  to by  str. You can  use  the  

istream::seekg()  function  to reposition  the  get  pointer  in  this  string.  

Overload  12  

public:istrstream(unsigned  char*  str)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

140 C/C++  Legacy Classes

|

|

|
|

|

|
|



This  constructor  specifies  that  characters  should  be  extracted  from  

the  null-terminated  string  that  is pointed  to by  str. You can  use  the  

istream::seekg()  function  to reposition  the  get  pointer  in  this  string.  

Overload  13  

public:istrstream(unsigned  char*  str,  int  size)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  14  

public:istrstream(unsigned  char*  str,  long  size)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  15  

public:istrstream(signed  char*  str,  int size)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  16  

public:istrstream(const  char*  str,  long  size)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of bytes  that  starts  at the  position  pointed  to by  str  and  

has  a length  of size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  17  

public:istrstream(char*  str,  int size)  

 

Chapter  3. Reference 141

|

|
|

|

|

|
|

|



This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  array  of  bytes  that  starts  at  the  position  pointed  to by  str  and  

has  a length  of  size  bytes.  You can  use  the  istream::seekg()  function  

to  reposition  the  get  pointer  anywhere  in this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  18  

public:istrstream(char*  str)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  from  

the  null-terminated  string  that  is pointed  to by  str. You can  use  the  

istream::seekg()  function  to reposition  the  get  pointer  in  this  string.

istrstream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

 strstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

rdbuf  194 

  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

 

142 C/C++  Legacy Classes

|

|
|



Inherited  Protected  Functions  

 strstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

~strstreambase  193 strstreambase  193
  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

ofstream 

This  class  specializes  the  ostream  class  for  use  with  files.  

Class  header  file:  fstream.h  

ofstream - Hierarchy List 

   ios  

    fstreambase  

    ofstream

ofstream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  ofstream  class  can  be  constructed  and  destructed.  

~ofstream  

public:~ofstream()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  ofstream  object.  

ofstream  

 

Chapter  3. Reference 143



Constructs  an  object  of this  class.  

Overload  1  

public:ofstream(int  fd,  char*  p, int l) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  ofstream  object  that  is attached  to  the  file  descriptor  

fd.  If  fd  is  not  open,  ios::failbit  is set  in  the  format  state  of the  

ofstream  object.  This  constructor  also  sets  up  an  associated  filebuf  

object  with  a stream  buffer  that  has  length  l bytes  and  begins  at the  

position  pointed  to by  p. If p is equal  to  0 or  l is equal  to  0,  the  

associated  filebuf  object  is unbuffered.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  third  

argument  is  an  int  value.
Overload  2 

public:ofstream(  const  char*  name,  

          const  char*  attr,  

          int  mode  = ios::out,  

          int  prot  = filebuf::openprot  ) 

This  is supported  on  

z/OS
   

 Constructs  an  ofstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode,  attributes  equal  to  attr  and  protection  mode  

equal  to  prot.  The  default  value  for  the  argument  prot  is 

filebuf::openprot.  If the  file  cannot  be  opened,  the  error  state  of  the  

constructed  fstream  object  is set.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes  

such  as  lrecl  or recfm.  All  the  parameters  documented  for  the  

fopen()  functions  are  supported,  with  the  exception  of type=record.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
Overload  3 

public:ofstream(int  fd)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  ofstream  object  that  is attached  to  the  file  descriptor  

fd.  If  fd  is  not  open,  ios::failbit  is set  in  the  format  state  of the  

ofstream  object.  

Overload  4 

public:ofstream(int  fd,  char*  p, long  l) 

This  is supported  on  

AIX
   

z/OS
   

 Constructs  an  ofstream  object  that  is attached  to  the  file  descriptor  

fd.  If  fd  is  not  open,  ios::failbit  is set  in  the  format  state  of the  

ofstream  object.  This  constructor  also  sets  up  an  associated  filebuf  

object  with  a stream  buffer  that  has  length  l bytes  and  begins  at the  

position  pointed  to by  p. If p is equal  to  0 or  l is equal  to  0,  the  

associated  filebuf  object  is unbuffered.  

 

144 C/C++  Legacy Classes

|

|
|

|



This  function  is  available  for  64-bit  applications.  The  third  

argument  is a long  value.  

Overload  5 

public:ofstream(  const  char*  name,  

          int  mode  = ios::out,  

          int  prot  = filebuf::openprot,  

          _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is  supported  on  

400
   

 Constructs  an  ifstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  protection  mode  equal  to prot,  and  ccsid  

equal  to  ccsid.  The  default  value  for  the  argument  prot  is 

filebuf::openprot.  If the  file  cannot  be  opened,  the  error  state  of the  

constructed  fstream  object  is set.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  6 

public:ofstream(const  char*  name,  int mode,  _CCSID_T)  

This  is  supported  on  

400
   

 Constructs  an  ofstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  ccsid  equal  to  ccsid.  If the  file  cannot  be  

opened,  the  error  state  of the  constructed  fstream  object  is set.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  7 

public:ofstream(  const  char*  name,  

          int  mode  = ios::out,  

          int  prot  = filebuf::openprot  ) 

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  an  ofstream  object  and  opens  the  file  name  with  open  

mode  equal  to  mode  and  protection  mode  equal  to prot.  The  

default  value  for  mode  is ios::out  and  for  prot  is filebuf::openprot.  

If  the  file  cannot  be  opened,  the  error  state  of the  constructed  

ofstream  object  is set.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
Overload  8 

public:ofstream()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  unopened  ofstream  object.

 

Chapter  3. Reference 145



Filebuf Functions 

rdbuf  

public:filebuf*  rdbuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  filebuf  object  that  is  attached  to  the  ofstream  

object.

Open Functions 

Opens  the  file.  

z/OS  Considerations  

 The  prot  attribute  is ignored.
open  

 Opens  the  specified  file.  

Overload  1  

public:void  

  open(  const  char*  name,  

        int  mode  = ios::out,  

        int  prot  = filebuf::openprot,  

        _CCSID_T  ccsid  = _CCSID_T  ( 0 ) ) 

This  is supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode,  protection  and  

coded  character  set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to a file  or  if the  call  to  fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is  treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is  zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  2 

public:void  

  open(  const  char*  name,  

        int  mode  = ios::out,  

        int  prot  = filebuf::openprot  ) 

This  is supported  on  

AIX
   

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 

146 C/C++  Legacy Classes



The  default  value  for  prot  is filebuf::openprot.  If the  fstream  object  

is  already  attached  to  a file  of  if the  call  to fstream.rdbuf()->open()  

fails,  ios::failbit  is set  in  the  error  state  for  the  fstream  object.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

Overload  3 

public:void  open(const  char*  name,  int  mode,  _CCSID_T  ccsid)  

This  is  supported  on  

400
   

 Opens  the  file  with  the  specified  name,  mode  and  coded  character  

set  id  and  attaches  it to the  fstream  object.  

 If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it unless  ios::nocreate  is set.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.  

 If  the  ccsid  parameter  is non-zero  then  it is treated  as  a CCSID  

(coded  character  set  identifier)  and  will  correspond  to  the  CCSID  

of  data  written  to  and  from  the  file.  If  the  parameter  value  is zero  

then  the  CCSID  of the  job  will  be  used.  

Overload  4 

public:void  

  open(  const  char*  name,  

        const  char*  attr,  

        int  mode  = ios::out,  

        int  prot  = filebuf::openprot  ) 

This  is  supported  on  

z/OS
   

 Opens  the  file  with  the  name  and  attaches  it to  the  fstream  object.  

If  the  file  with  the  name,  name  does  not  already  exist,  open()  tries  

to  create  it with  protection  mode  equal  to  prot,  unless  ios::nocreate  

is  set.  

 You can  use  the  attr  parameter  to specify  additional  file  attributes,  

such  as  lrecl  or  recfm.  All  the  parameters  documented  for  the  

fopen()  function  are  supported,  with  the  exception  of  type=record.  

 The  members  of  the  ios::open_mode  enumeration  are  bits  that  can  

be  ORed  together.  The  value  of mode  is the  result  of such  an  OR  

operation.  This  result  is an  int  value,  and  for  this  reason,  mode  has  

type  int  rather  than  open_mode.

 

Chapter  3. Reference 147



ofstream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 fstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

~fstreambase  79 attach  81 

close  82 detach  82 

fstreambase  79 open  82 

setbuf  84 

  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

 fstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

verify  82 

 

148 C/C++  Legacy Classes



Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

ostream 

The  ostream  class  lets  you  use  the  output  operator  <<  to perform  formatted  

output,  or  insertion,  to  a stream  buffer.  Consider  the  following  statement,  where  

outs  is  a reference  to  an  ostream  object  and  x is  a variable  of a built-in  type:  

   outs  << x; 

The  output  operator  <<  calls  opfx()  before  beginning  insertion.  If opfx()  returns  a 

nonzero  value,  the  output  operator  converts  x into  a series  of  characters  and  inserts  

these  characters  into  the  stream  buffer  attached  to  outs.  If an  error  occurs,  the  

output  operator  sets  ios::failbit.  

The  details  of  the  conversion  of x depend  on  the  format  state  of the  ostream  object  

and  the  type  of  x.  For  numeric  and  string  values,  including  the  char*  types  and  

wchar_t*,  but  excluding  the  char  types  and  wchar_t,  the  output  operator  resets  the  

width  variable  ios::x_width  of the  format  state  of  an  ostream  object  to  0,  but  it does  

not  affect  anything  else  in  the  format  state.  

The  output  operator  is defined  for  the  following  types:  

v   Arrays  of  characters  and  char  values,  including  arrays  of  wchar_t  and  wchar_t  

values  

v   Other  integral  values:  short,  int,  long,  float,  double,  long  double,  and  long  long  

values  

v   Pointers  to  void.  

You can  also  define  output  operators  for  your  own  types.  

Class  header  file:  iostream.h  

ostream - Hierarchy List 

   ios  

    ostream  

    ostream_withassign

ostream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  ostream  class  can  be  constructed  and  destructed.  

 

Chapter  3. Reference 149



~ostream  

public:virtual  ~ostream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  ostream  object.  

ostream  

Overload  1  

public:ostream(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  a single  argument  which  is a pointer  to  a 

streambuf  object.  This  constructor  creates  an  ostream  object  that  is 

attached  to  the  streambuf  object  pointed  to by  the  argument.  The  

format  variables  are  initialized  to  their  defaults.  

Overload  2 

public:ostream(int  fd)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  is obsolete;  do  not  use  it.  

Overload  3 

public:ostream(int  size,  char*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  is obsolete;  do  not  use  it.  

Overload  4 

protected:ostream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  is obsolete;  do  not  use  it.

Insertion Functions 

You can  use  the  insertion  functions  to  insert  characters  into  a stream  buffer  as  a 

sequence  of bytes.  

complicated_put  

public:ostream&  complicated_put(char  c)  

This  is supported  on  

AIX
   

400
   

z/OS
   

flush  

public:ostream&  flush()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  ultimate  consumer  of characters  that  are  stored  in  a stream  buffer  may  

not  necessarily  consume  them  immediately.  flush()  causes  any  characters  

that  are  stored  in  the  stream  buffer  attached  to  the  output  stream  to  be 

consumed.  

 When  ostream::flush()  is called,  one  of  the  following  occurs:  

 

150 C/C++  Legacy Classes



v   if the  stream  buffer’s  put  area  is not  empty  and  there  are  characters  

waiting  to be  consumed,  flush  will  call  the  stream  buffer’s  overflow()  

function  to  flush  out  all  the  content  in  the  put  area.  

v   if the  stream  buffer’s  get  area  is  not  empty  and  there  are  characters  

waiting  to be  extracted,  flush  will  call  the  stream  buffer’s  sync()  function.  

The  sync()  function  will  clean  up  both  the  put  area  and  the  get  area  by  

sending  any  characters  that  are  stored  in  the  put  area  to  the  ultimate  

consumer,  and  sending  any  characters  that  are  waiting  in  the  get  area  

back  to  the  ultimate  producer.
ls_complicated  

Overload  1  

public:ostream&  ls_complicated(char)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.  

Overload  2 

public:ostream&  ls_complicated(signed  char)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.  

Overload  3 

public:ostream&  ls_complicated(unsigned  char)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.
put  

public:ostream&  put(char  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Inserts  c into  the  stream  buffer  attached  to  the  output  stream.  put()  sets  the  

error  state  of  the  output  stream  if the  insertion  fails.  

write  

Overload  1  

public:ostream&  write(const  signed  char*  s, int  n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Inserts  n characters  that  begin  at the  position  pointed  to  by  s. This  

array  of  characters  does  not  need  to  end  with  a null  character.  

Overload  2 

public:ostream&  write(const  char*  s, int  n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Inserts  n characters  that  begin  at the  position  pointed  to  by  s. This  

array  of  characters  does  not  need  to  end  with  a null  character.  

Overload  3 

public:ostream&  write(const  unsigned  char*  s, int n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 151



Inserts  n characters  that  begin  at the  position  pointed  to  by  s. This  

array  of characters  does  not  need  to  end  with  a null  character.

Output operators 

The  output  operator  calls  the  output  prefix  function  opfx()  before  inserting  

characters  into  a stream  buffer,  and  calls  the  output  suffix  function  osfx()  after  

inserting  characters.  

operator  <<  

Overload  1  

public:ostream&  operator  <<(const  unsigned  char*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  all  the  characters  in  the  string  into  the  

stream  buffer  with  the  exception  of the  null  character  that  

terminates  the  string.  

 If  ios::x_width  is greater  than  zero  and  the  representation  of  the  

value  to be  inserted  is less  than  ios::x_width,  the  output  operator  

inserts  enough  fill  characters  to  ensure  that  the  representation  

occupies  an  entire  field  in  the  stream  buffer.  

Overload  2 

public:ostream&  operator  <<(const  char*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  all  the  characters  in  the  string  into  the  

stream  buffer  with  the  exception  of the  null  character  that  

terminates  the  string.  

 If  ios::x_width  is greater  than  zero  and  the  representation  of  the  

value  to be  inserted  is less  that  ios::x_width,  the  output  operator  

inserts  enough  fill  characters  to  ensure  that  the  representation  

occupies  an  entire  field  in  the  stream  buffer.  

Overload  3 

public:ostream&  operator  <<(const  void*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  pointers  to  void  to integral  values  

and  then  converts  them  to  hexadecimal  values  as if ios::showbase  

were  set.  This  version  of  the  output  operator  is used  to  print  out  

the  values  of  pointers.  

Overload  4 

public:ostream&  operator  <<(ios  & ( * f ) ( ios & )) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  following  built-in  manipulators  are  accepted  by  this  output  

operator:  

 

       ios&    dec(ios&)  

       ios&    hex(ios&)  

       ios&    oct(ios&)  

 

152 C/C++  Legacy Classes



These  manipulators  have  a specific  effect  on  an  ostream  object  

beyond  inserting  their  own  values.  For  example,  If outs  is a 

reference  to  an  ostream  object,  then  this  statement  sets  ios::dec:  

 

       outs  << dec;  

Overload  5 

public:ostream&  operator  <<(unsigned  char  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  the  character  into  the  stream  buffer  

without  performing  any  conversion  on  it. 

Overload  6 

public:ostream&  operator  <<(unsigned  long)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of  integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If ios::showbase  is set,  ″0″  is inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to 0, a single  ″0″  is inserted,  not  ″00″.  

v   If ios::dec  is set,  the  integral  type  is  converted  to  a series  of  

decimal  digits.  

v   If ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is  inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of  these  format  flags  is set,  the  integral  type  is converted  to 

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If the  integral  type  is  negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If the  integral  type  is  equal  to  0, the  single  digit  0 is inserted  

v   If the  integral  type  is  positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.
Overload  7 

public:ostream&  operator  <<(long  long)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of  integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If ios::showbase  is set,  ″0″  is inserted  into  the  stream  

 

Chapter  3. Reference 153



buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to  0,  a single  ″0″  is inserted,  not  ″00″.  

v   If  ios::dec  is  set,  the  integral  type  is converted  to a series  of 

decimal  digits.  

v   If  ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of these  format  flags  is set,  the  integral  type  is converted  to  

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If  the  integral  type  is negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If  the  integral  type  is equal  to  0, the  single  digit  0 is inserted  

v   If  the  integral  type  is positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.

Note:  The  support  for  long  long  is controlled  by  _LONG_LONG,  

__EXTENDED__,  or  the  -q(no)longlong  option.  

Overload  8 

public:ostream&  operator  <<(unsigned  int  a) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to  the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If  ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If  ios::showbase  is set,  ″0″  is  inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to  0,  a single  ″0″  is inserted,  not  ″00″.  

v   If  ios::dec  is  set,  the  integral  type  is converted  to a series  of 

decimal  digits.  

v   If  ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of these  format  flags  is set,  the  integral  type  is converted  to  

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If  the  integral  type  is negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If  the  integral  type  is equal  to  0, the  single  digit  0 is inserted  

v   If  the  integral  type  is positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.
Overload  9 

public:ostream&  operator  <<(double)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

154 C/C++  Legacy Classes



The  output  operator  performs  a conversion  operation  on  the  

argument  and  inserts  it  into  the  stream  buffer  attached  to  the  

output  stream.  The  conversion  depends  on  the  values  returned  by  

the  following  functions:  

v   precision()  - returns  the  number  of  significant  digits  that  appear  

after  the  decimal.  The  default  value  is 6. 

v   width()  - if this  returns  0,  the  argument  is  inserted  without  any  

fill  characters.  If the  return  value  is greater  than  the  number  of  

characters  needed  to  represent  the  argument,  extra  fill  characters  

are  inserted  so  that  the  total  number  of characters  inserted  is 

equal  to  the  return  value.

The  conversion  also  depends  on  the  values  of  the  following  format  

flags:  

v   If ios::scientific  is  set,  the  argument  is converted  to  scientific  

notation  with  one  digit  before  the  decimal,  and  the  number  of 

digits  after  the  decimal  equal  to the  value  returned  by  

precision().  The  exponent  begins  with  a lowercase  ″e″  unless  

ios::uppercase  is set,  in which  case  the  exponent  begins  with  an  

uppercase  ″E″.  

v   If ios::fixed  is set,  the  argument  is converted  to  fixed  notation,  

with  the  number  of digits  after  the  decimal  point  equal  to the  

value  returned  by  precision().  

v   If neither  ios::fixed  nor  ios::scientific  is set,  the  conversion  

depends  upon  the  value  of  the  argument.  If ios::uppercase  is  set,  

the  exponents  of values  in  scientific  notation  begin  with  an  

uppercase  ″E″.
Overload  10  

public:ostream&  operator  <<(short  i) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of  integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If ios::showbase  is set,  ″0″  is inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to 0, a single  ″0″  is inserted,  not  ″00″.  

v   If ios::dec  is set,  the  integral  type  is  converted  to  a series  of  

decimal  digits.  

v   If ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is  inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of  these  format  flags  is set,  the  integral  type  is converted  to 

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If the  integral  type  is  negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If the  integral  type  is  equal  to  0, the  single  digit  0 is inserted  

v   If the  integral  type  is  positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.

 

Chapter  3. Reference 155



Overload  11 

public:ostream&  operator  <<(long  double)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  performs  a conversion  operation  on  the  

argument  and  inserts  it  into  the  stream  buffer  attached  to  the  

output  stream.  The  conversion  depends  on  the  values  returned  by  

the  following  functions:  

v   precision()  - returns  the  number  of  significant  digits  that  appear  

after  the  decimal.  The  default  value  is 6.  

v   width()  - if this  returns  0,  the  argument  is inserted  without  any  

fill  characters.  If  the  return  value  is greater  than  the  number  of  

characters  needed  to  represent  the  argument,  extra  fill  characters  

are  inserted  so that  the  total  number  of  characters  inserted  is 

equal  to  the  return  value.

The  conversion  also  depends  on  the  values  of the  following  format  

flags:  

v   If  ios::scientific  is set,  the  argument  is converted  to  scientific  

notation  with  one  digit  before  the  decimal,  and  the  number  of 

digits  after  the  decimal  equal  to  the  value  returned  by  

precision().  The  exponent  begins  with  a lowercase  ″e″  unless  

ios::uppercase  is set,  in  which  case  the  exponent  begins  with  an  

uppercase  ″E″.  

v   If  ios::fixed  is  set,  the  argument  is  converted  to  fixed  notation,  

with  the  number  of digits  after  the  decimal  point  equal  to  the  

value  returned  by  precision().  

v   If  neither  ios::fixed  nor  ios::scientific  is set,  the  conversion  

depends  upon  the  value  of  the  argument.  If ios::uppercase  is set,  

the  exponents  of  values  in scientific  notation  begin  with  an  

uppercase  ″E″.
Overload  12  

public:ostream&  operator  <<(int  a) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to  the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If  ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If  ios::showbase  is set,  ″0″  is  inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to  0,  a single  ″0″  is inserted,  not  ″00″.  

v   If  ios::dec  is  set,  the  integral  type  is converted  to a series  of 

decimal  digits.  

v   If  ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of these  format  flags  is set,  the  integral  type  is converted  to  

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

 

156 C/C++  Legacy Classes



v   If the  integral  type  is  negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If the  integral  type  is  equal  to  0, the  single  digit  0 is inserted  

v   If the  integral  type  is  positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.
Overload  13  

public:ostream&  operator  <<(long)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of  integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If ios::showbase  is set,  ″0″  is inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to 0, a single  ″0″  is inserted,  not  ″00″.  

v   If ios::dec  is set,  the  integral  type  is  converted  to  a series  of  

decimal  digits.  

v   If ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is  inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of  these  format  flags  is set,  the  integral  type  is converted  to 

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If the  integral  type  is  negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If the  integral  type  is  equal  to  0, the  single  digit  0 is inserted  

v   If the  integral  type  is  positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.
Overload  14  

public:ostream&  operator  <<(unsigned  long  long)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of  integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If ios::showbase  is set,  ″0″  is inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to 0, a single  ″0″  is inserted,  not  ″00″.  

v   If ios::dec  is set,  the  integral  type  is  converted  to  a series  of  

decimal  digits  

 

Chapter  3. Reference 157



v   If  ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of these  format  flags  is set,  the  integral  type  is converted  to  

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If  the  integral  type  is negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If  the  integral  type  is equal  to  0, the  single  digit  0 is inserted  

v   If  the  integral  type  is positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.

Note:  The  support  for  long  long  is controlled  by  _LONG_LONG,  

__EXTENDED__,  or  the  -q(no)longlong  option.  

Overload  15  

public:ostream&  operator  <<(unsigned  short  i)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  integral  value  according  to  the  

format  state  of  the  output  stream  and  inserts  characters  into  the  

stream  buffer  associated  with  the  output  stream.  There  is no  

overflow  detection  on  conversion  of integral  types.  

 The  conversion  that  takes  place  depends,  in  part,  on  the  settings  of  

the  following  format  flags:  

v   If  ios::oct  is set,  the  integral  type  is converted  to  a series  of octal  

digits.  If  ios::showbase  is set,  ″0″  is  inserted  into  the  stream  

buffer  before  the  octal  digits.  If  the  value  being  inserted  is equal  

to  0,  a single  ″0″  is inserted,  not  ″00″.  

v   If  ios::dec  is  set,  the  integral  type  is converted  to a series  of 

decimal  digits.  

v   If  ios::hex  is set,  the  integral  type  is converted  to  a series  of  

hexadecimal  digits.  If ios::showbase  is set,  ″0x″  (or  ″0X″  if 

ios::uppercase  is set)  is inserted  into  the  stream  buffer  before  the  

hexadecimal  digits.

If  none  of these  format  flags  is set,  the  integral  type  is converted  to  

a series  of  decimal  digits.  Then  its  sign  also  affects  the  conversion:  

v   If  the  integral  type  is negative,  a negative  sign  ″-″  is inserted  

before  the  decimal  digits  

v   If  the  integral  type  is equal  to  0, the  single  digit  0 is inserted  

v   If  the  integral  type  is positive  and  ios::showpos  is set,  a positive  

sign  ″+″  is inserted  before  the  decimal  digits.
Overload  16  

public:ostream&  operator  <<(const  wchar_t*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  converts  the  wchar_t  string  to its  equivalent  

multibyte  character  string,  and  then  inserts  it into  the  stream  buffer  

with  the  exception  of the  null  character  that  terminates  the  string.  

 If  ios::x_width  is greater  than  zero  and  the  representation  of  the  

value  to be  inserted  is less  than  ios::x_width,  the  output  operator  

 

158 C/C++  Legacy Classes



inserts  enough  fill  characters  to  ensure  that  the  representation  

occupies  an  entire  field  in  the  stream  buffer.  

Overload  17  

public:ostream&  operator  <<(signed  char  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  the  character  into  the  stream  buffer  

without  performing  any  conversion  on  it. 

Overload  18  

public:ostream&  operator  <<(float)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  performs  a conversion  operation  on  the  

argument  and  inserts  it  into  the  stream  buffer  attached  to  the  

output  stream.  The  conversion  depends  on  the  values  returned  by  

the  following  functions:  

v   precision()  - returns  the  number  of  significant  digits  that  appear  

after  the  decimal.  The  default  value  is 6. 

v   width()  - if this  returns  0,  the  argument  is  inserted  without  any  

fill  characters.  If the  return  value  is greater  than  the  number  of  

characters  needed  to  represent  the  argument,  extra  fill  characters  

are  inserted  so  that  the  total  number  of characters  inserted  is 

equal  to  the  return  value.

The  conversion  also  depends  on  the  values  of  the  following  format  

flags:  

v   If ios::scientific  is  set,  the  argument  is converted  to  scientific  

notation  with  one  digit  before  the  decimal,  and  the  number  of 

digits  after  the  decimal  equal  to the  value  returned  by  

precision().  The  exponent  begins  with  a lowercase  ″e″  unless  

ios::uppercase  is set,  in which  case  the  exponent  begins  with  an  

uppercase  ″E″.  

v   If ios::fixed  is set,  the  argument  is converted  to  fixed  notation,  

with  the  number  of digits  after  the  decimal  point  equal  to the  

value  returned  by  precision().  

v   If neither  ios::fixed  nor  ios::scientific  is set,  the  conversion  

depends  upon  the  value  of  the  argument.  If ios::uppercase  is  set,  

the  exponents  of values  in  scientific  notation  begin  with  an  

uppercase  ″E″.
Overload  19  

public:ostream&  operator  <<(ostream  & ( * f ) ( ostream  & )) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  following  built-in  manipulators  are  accepted  by  this  output  

operator:  

 

       ostream&    endl(ostream&)  

       ostream&    ends(ostream&)  

       ostream&    flush(ostream&)  

These  manipulators  have  a specific  effect  on  an  ostream  object  

beyond  inserting  their  own  values.  For  example,  If outs  is a 

reference  to  an  ostream  object,  then  this  statement  inserts  a newline  

character  and  calls  flush():  

 

Chapter  3. Reference 159



outs  << endl;  

This  statement  inserts  a null  character:  

 

       outs  << ends;  

This  statement  flushes  the  stream  buffer  attached  to  outs.  It is 

equivalent  to  flush():  

 

       outs  << flush;  

Overload  20  

public:ostream&  operator  <<(wchar_t)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  the  character  into  the  stream  buffer  

without  performing  any  conversion  on  it.  

Overload  21  

public:ostream&  operator  <<(streambuf*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 If  opfx()  returns  a nonzero  value,  the  output  operator  inserts  all of  

the  characters  that  can  be  taken  from  the  streambuf  pointer  into  

the  stream  buffer  attached  to  the  output  stream.  Insertion  stops  

when  no  more  characters  can  be  fetched  from  the  streambuf.  No  

padding  is performed.  

Overload  22  

public:ostream&  operator  <<(const  signed  char*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  all  the  characters  in  the  string  into  the  

stream  buffer  with  the  exception  of the  null  character  that  

terminates  the  string.  

 If  ios::x_width  is greater  than  zero  and  the  representation  of  the  

value  to be  inserted  is less  than  ios::x_width,  the  output  operator  

inserts  enough  fill  characters  to  ensure  that  the  representation  

occupies  an  entire  field  in  the  stream  buffer.  

Overload  23  

public:ostream&  operator  <<(char  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  output  operator  inserts  the  character  into  the  stream  buffer  

without  performing  any  conversion  on  it.

Positioning Functions 

seekp  

 Functions  that  work  with  the  put  pointer  of the  ultimate  consumer.  

Overload  1  

public:ostream&  seekp(streampos  p)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

160 C/C++  Legacy Classes



Repositions  the  put  pointer  of  the  ultimate  consumer.  Sets  the  put  

pointer  to  the  position  p.  

Overload  2 

public:ostream&  seekp(streamoff  o, ios::seek_dir  d)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Repositions  the  put  pointer  of  the  ultimate  consumer.  Sets  the  put  

pointer  to  the  position  specified  by  d with  the  offset  of  o.  The  seek  

dir, d,  can  have  the  following  values:  

v   ios::beg  - the  beginning  of  the  stream  

v   ios::cur  - the  current  position  of the  put  pointer  

v   ios::end  - the  end  of  the  stream

The  new  position  of the  put  pointer  is equal  to the  position  

specified  by  d offset  by  the  value  o.  If  you  attempt  to  move  the  put  

pointer  to  a position  that  is not  valid,  seekp()  sets  ios::badbit.
tellp  

public:streampos  tellp()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  the  current  position  of the  put  pointer  of the  stream  buffer  that  is 

attached  to  the  output  stream.

Prefix and Suffix Functions 

Functions  that  are  called  either  before  or  after  inserting  characters  into  the  ultimate  

consumer.  

opfx  

public:int  opfx()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 opfx()  is  called  by  the  output  operator  before  inserting  characters  into  a 

stream  buffer.  opfx()  checks  the  error  state  of  the  output  stream.  If the  

internal  flag  ios::hardfail  is  set,  opfx()  returns  0. Otherwise,  opfx()  flushes  

the  stream  buffer  attached  to  the  ios  object  pointed  to by  tie(),  if one  exists,  

and  returns  the  value  returned  by  ios::good().  ios::good()  returns  0 if 

ios::failbit,  ios::badbit,  or  ios:eofbit  is set.  Otherwise,  ios::good()  returns  a 

nonzero  value.  

osfx  

public:void  osfx()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 osfx()  is  called  before  a formatted  output  function  returns.  osfx()  flushes  

the  streambuf  object  attached  to  the  output  stream  if ios::unitbuf  is set.  

 osfx()  is  called  by  the  output  operator.  If  you  overload  the  output  operator  

to  handle  your  own  classes,  you  should  ensure  that  osfx()  is called  after  

any  direct  manipulation  of a streambuf  object.  Binary  output  functions  do  

not  call  osfx().
do_opfx  

protected:int  do_opfx()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 161



Internal  function.  Do  not  use.  

do_osfx  

protected:void  do_osfx()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Internal  function.  Do  not  use.

ostream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

 

162 C/C++  Legacy Classes



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

ostream_withassign 

Use  this  class  to  assign  another  stream  to  an  ostream  object.  

Class  header  file:  iostream.h  

ostream_withassign - Hierarchy List 

   ios  

    ostream  

    ostream_withassign

ostream_withassign - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  ostream_withassign  class  can  be  constructed  and  destructed.  They  

can  also  be  copied.  

~ostream_withassign  

public:virtual  ~ostream_withassign()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Destructs  an  ostream_withassign  object.  

operator  =  

public:ostream_withassign&  operator  =(ostream_withassign&  rhs)  

This  is  supported  on  

AIX
   

 Copy  constructor.  

ostream_withassign  

public:ostream_withassign()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  ostream_withassign  object.  It  does  not  do  any  initialization  

on  the  object.

Assignment Operator 

Assignment  operators  for  ostream_withassign.  

operator  =  

Overload  1  

public:ostream_withassign&  operator  =(streambuf*)  

 

Chapter  3. Reference 163



This  is supported  on  

AIX
   

400
   

z/OS
   

 This  assignment  operator  takes  a pointer  to a streambuf  object  as  

its  argument.  It  associates  the  streambuf  with  the  

ostream_withassign  object  that  is on  the  left  side  of  the  assignment  

operator.  

Overload  2 

public:ostream_withassign&  operator  =(ostream&)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  assignment  operator  takes  a reference  to an  ostream  object  as 

its  argument.  It  associates  the  streambuf  attached  to the  output  

stream  with  the  ostream_withassign  object  that  is  on  the  left  side  of  

the  assignment  operator.

ostream_withassign - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

 ostream  

Definition  

Page  

Number  Definition  

Page  

Number  

~ostream  149 complicated_put  150 

flush  150 ls_complicated  151 

operator  << 152 opfx  161 

osfx  161 ostream  150 

put  151 seekp  160 

tellp  161 write  151
 

 

164 C/C++  Legacy Classes



Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ostream  

Definition  

Page  

Number  Definition  

Page  

Number  

do_opfx  161 do_osfx  162 

ostream  150 

  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

ostrstream 

ostrstream  is  the  class  that  specializes  ostream  to  use  a strstreambuf  for  insertion  

into  arrays  of characters  in  memory.  You can  create  an  ostrstream  object  by  

associating  the  object  with  a previously  allocated  array  of  characters.  You can  then  

write  to  it  and  apply  other  operations  to  it just  as  you  would  to  another  type  of  

stream.  

Class  header  file:  strstream.h  

ostrstream - Hierarchy List 

   ios  

    strstreambase  

 

Chapter  3. Reference 165



ostrstream

ostrstream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  ostrstream  class  can  be  constructed  and  destructed.  

~ostrstream  

public:~ostrstream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 The  ostrstream  destructor  frees  space  allocated  by  the  ostrstream  

constructor.  The  destructor  also  writes  a null  byte  to the  stream  buffer  to 

terminate  the  stream.  

ostrstream  

Overload  1  

public:ostrstream(signed  char*  str,  int  size,  int = ios::out)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  the  stream  buffer  that  is attached  to  

the  ostrstream  object  consists  of  an  array  that  starts  at the  position  

pointed  to  by  str  with  a length  of  size  bytes.  If ios::ate  or  ios::app  is 

set,  str  points  to  a null-terminated  string  and  insertions  begin  at  

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  ostream::seekp()  function  to 

reposition  the  put  pointer.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  2 

public:ostrstream(unsigned  char*  str,  long  size,  int  = ios::out)  

This  is supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  the  stream  buffer  that  is attached  to  

the  ostrstream  object  consists  of  an  array  that  starts  at the  position  

pointed  to  by  str  with  a length  of  size  bytes.  If ios::ate  or  ios::app  is 

set,  str  points  to  a null-terminated  string  and  insertions  begin  at  

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  ostream::seekp()  function  to 

reposition  the  put  pointer.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  3 

public:ostrstream(char*  str,  long  size,  int = ios::out)  

This  is supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  the  stream  buffer  that  is attached  to  

the  ostrstream  object  consists  of  an  array  that  starts  at the  position  

pointed  to  by  str  with  a length  of  size  bytes.  If ios::ate  or  ios::app  is 

set,  str  points  to  a null-terminated  string  and  insertions  begin  at  

 

166 C/C++  Legacy Classes

|

|
|

|

|



the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  ostream::seekp()  function  to  

reposition  the  put  pointer.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  4 

public:ostrstream(signed  char*  str,  long  size,  int = ios::out)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  the  stream  buffer  that  is attached  to  

the  ostrstream  object  consists  of  an  array  that  starts  at the  position  

pointed  to  by  str  with  a length  of  size  bytes.  If  ios::ate  or  ios::app  is  

set,  str  points  to a null-terminated  string  and  insertions  begin  at 

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  ostream::seekp()  function  to  

reposition  the  put  pointer.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  5 

public:ostrstream(unsigned  char*  str,  int  size,  int  = ios::out)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  the  stream  buffer  that  is attached  to  

the  ostrstream  object  consists  of  an  array  that  starts  at the  position  

pointed  to  by  str  with  a length  of  size  bytes.  If  ios::ate  or  ios::app  is  

set,  str  points  to a null-terminated  string  and  insertions  begin  at 

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  ostream::seekp()  function  to  

reposition  the  put  pointer.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  6 

public:ostrstream(char*  str,  int size,  int = ios::out)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  the  stream  buffer  that  is attached  to  

the  ostrstream  object  consists  of  an  array  that  starts  at the  position  

pointed  to  by  str  with  a length  of  size  bytes.  If  ios::ate  or  ios::app  is  

set,  str  points  to a null-terminated  string  and  insertions  begin  at 

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  ostream::seekp()  function  to  

reposition  the  put  pointer.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  7 

public:ostrstream()  

 

Chapter  3. Reference 167

|

|

|
|

|

|
|



This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  space  is allocated  dynamically  for  

the  stream  buffer  that  is  attached  to  the  ostrstream  object.

Stream Buffer Functions 

Use  these  functions  to  work  with  the  stream  buffer.  

pcount  

 Returns  the  number  of bytes  that  have  been  stored  in the  stream  buffer.  

pcount()  is  mainly  useful  when  binary  data  has  been  stored  and  the  stream  

buffer  attached  to the  ostrstream  object  is not  a null-terminated  string.  

pcount()  returns  the  total  number  of bytes,  not  just  the  number  of  bytes  up  

to  the  first  null  character.  

Overload  1  

public:int  pcount()  

This  is supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 This  function  returns  an  int  value  for  32-bit  applications.  It 

is not  available  for  64-bit  applications.
Overload  2 

public:long  pcount()  

This  is supported  on  

AIX
   

z/OS
   

 This  function  returns  a long  value  for  64-bit  applications.  It is not  

available  for  32-bit  applications.
str  

public:char*  str()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  stream  buffer  attached  to  the  ostrstream  and  calls  

freeze()  with  a nonzero  value  to prevent  the  stream  buffer  from  being  

deleted.  If  the  stream  buffer  was  constructed  with  an  explicit  array,  the  

value  returned  is a pointer  to that  array.  If  the  stream  buffer  was  

constructed  in dynamic  mode,  str  points  to  the  dynamically  allocated  area.  

 Until  you  call  str(),  deleting  the  dynamically  allocated  stream  buffer  is the  

responsibility  of the  ostrstream  object.  After  str()  has  been  called,  the  

calling  application  has  responsibility  for  the  dynamically  allocated  stream  

buffer.

ostrstream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

 

168 C/C++  Legacy Classes

|

|
|

|



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

 strstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

rdbuf  194 

  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 strstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

~strstreambase  193 strstreambase  193
  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

 

Chapter  3. Reference 169



ios  

Definition  

Page  

Number  Definition  

Page  

Number  

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

stdiobuf 

This  class  is used  to  mix  standard  C  input  and  output  functions  with  C++  I/O  

Stream  Library  functions.  This  class  is obsolete.  New  programs  should  avoid  using  

this  class.  

Class  header  file:  stdiostream.h  

stdiobuf - Hierarchy List 

   streambuf  

    stdiobuf

stdiobuf - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  stdiobuf  class  can  be  constructed  and  destructed.  

~stdiobuf  

public:virtual  ~stdiobuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructor  for  stdiobuf.  Frees  the  spaces  allocated  by  the  stdiobuf  

constructor  and  flushes  the  file  that  this  stdiobuf  object  is associated  with.  

stdiobuf  

public:stdiobuf(FILE*  f) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Creates  an  stdiobuf  object  that  is associated  with  the  FILE  pointed  to  by f. 

Changes  that  are  made  to  the  stream  buffer  in  an  stdiobuf  object  are  also  

made  to  the  associated  FILE  pointed  to by  f. 

 Note:  If  ios::stdio  is set  in  the  format  state  of  an  ostream  object,  a call  to 

osfx()  flushes  stdout  and  stderr.

Positioning Functions 

overflow  

public:virtual  int overflow(int  = EOF)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Emptys  an  output  buffer.  Returns  EOF  on  error,  0 otherwise.  

 

170 C/C++  Legacy Classes



pbackfail  

public:virtual  int pbackfail(int  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Attempts  to  put  back  a character.  

seekoff  

public:virtual  streampos  seekoff(streamoff,  ios::seek_dir,  int)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

sync  

public:virtual  int sync()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

underflow  

public:virtual  int underflow()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Fills  an  input  buffer.  Returns  EOF  on  error  or end  of  input,  0 otherwise.

Query Functions 

stdiofile  

public:FILE*  stdiofile()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  FILE  object  that  the  stdiobuf  object  is associated  

with.

stdiobuf - Inherited Member Functions and Data 

Inherited  Public  Functions  

 streambuf  

Definition  

Page  

Number  Definition  

Page  

Number  

~streambuf  175 dbp 178 

in_avail  176 optim_in_avail  176 

optim_sbumpc  176 out_waiting  183 

overflow  183 pptr_non_null  179 

sbumpc  176 seekoff  179 

seekpos  179 setbuf  185 

sgetc  176 sgetn  177 

snextc  177 sputbackc  184 

sputc  184 sputn  184 

stossc  180 streambuf  175 

streambuf_resource  185 xsgetn  178 

xsputn  185 

  

Inherited  Public  Data  

 None  

 

Chapter  3. Reference 171



Inherited  Protected  Functions  

 streambuf  

Definition  

Page  

Number  Definition  

Page  

Number  

allocate  187 base  180 

blen  187 doallocate  188 

eback  180 ebuf  180 

egptr  180 epptr  180 

gbump  181 gptr  181 

pbase  181 pbump  181 

pptr  182 setb  182 

setg  182 setp  182 

unbuffered  188 

  

Inherited  Protected  Data  

 None

stdiostream 

This  class  uses  stdiobuf  objects  as  stream  buffers.  

Class  header  file:  stdiostream.h  

stdiostream - Hierarchy List 

   ios  

    stdiostream

stdiostream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of the  stdiostream  class  can  be  constructed  and  destructed.  

~stdiostream  

public:~stdiostream()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Destructs  a stdiostream  object.  

stdiostream  

public:stdiostream(FILE*)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Creates  a stdiostream  object  that  is  attached  to  the  FILE  pointed  to  by  the  

argument.

Miscellaneous 

rdbuf  

public:stdiobuf*  rdbuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

172 C/C++  Legacy Classes



Returns  a pointer  to  the  stdiobuf  object  that  is attached  to the  stdiostream  

object.

stdiostream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98

 

Chapter  3. Reference 173



streambuf 

You can  use  the  streambuf  class  to manipulate  objects  of its  derived  classes  filebuf,  

stdiobuf,  and  strstreambuf,  or  to derive  other  classes  from  it. 

streambuf  has  both  a public  interface  and  a protected  interface.  You should  think  

of  these  two  interfaces  as  being  two  separate  classes,  because  the  interfaces  are  

used  for  different  purposes.  You should  also  treat  streambuf  as if it  were  defined  

as  a virtual  base  class.  Do  not  create  objects  of  the  streambuf  class  itself.  

Although  most  virtual  functions  are  declared  public,  you  should  overload  them  in 

the  classes  that  you  derive  from  streambuf,  and  consider  them  part  of  the  

protected  interface.  

Public  interface  

You should  not  create  objects  of  the  streambuf  public  interface  directly.  Instead,  

you  should  use  streambuf  through  one  of the  predefined  classes  derived  from  

streambuf.  You can  use  objects  of filebuf,  strstreambuf  and  stdiobuf  directly  as  

implementations  of  stream  buffers.  The  public  interface  consists  of  the  streambuf  

public  member  functions  that  can  be  called  on  objects  of these  predefined  classes.  

streambuf  itself  does  not  have  any  facilities  for  taking  characters  from  the  ultimate  

producer  or  sending  them  to the  ultimate  consumer.  The  specialized  member  

functions  that  handle  the  interface  with  the  ultimate  producer  and  the  ultimate  

consumer  are  defined  in filebuf,  strstreambuf  and  stdiobuf.  

Except  for  the  destructor  of the  streambuf  class,  the  virtual  functions  are  described  

as  part  of the  protected  interface.  

Protected  interface  

Use  the  streambuf  protected  interface  in  the  following  ways:  

v   As  a base  class  to  implement  your  own  specialized  stream  buffers.  In  this  sense  

you  can  think  of  streambuf  as  a virtual  base  class.  The  streambuf  class  only  

provides  the  basic  functions  needed  to manipulate  characters  in a stream  buffer.  

The  filebuf,  strstreambuf  and  stdiobuf  classes  contain  functions  that  handle  the  

interface  with  the  standard  ultimate  consumers  and  producers.  If  you  want  to  

perform  more  sophisticated  operations,  or  if you  want  to  use  other  ultimate  

consumers  and  producers,  you  will  have  to  create  your  own  class  derived  from  

streambuf.  You need  to know  about  the  protected  interface  if you  want  to  create  

a class  derived  from  streambuf.  

v   Through  a predefined  class  derived  from  streambuf.  

There  are  two  kinds  of functions  in  the  protected  interface:  

v   Nonvirtual  member  functions,  which  manipulate  streambuf  objects  at a level  of  

detail  that  would  be  inappropriate  in  the  public  interface.  

v   Virtual  member  functions,  which  permit  classes  that  you  derive  from  streambuf  

to  customize  their  operations  depending  on  the  ultimate  producer  or  ultimate  

consumer.  When  you  define  the  virtual  functions  in  your  derived  classes,  you  

must  ensure  that  these  definitions  fulfill  the  conditions  stated  in  the  descriptions  

of  the  virtual  functions.  If your  definitions  of  the  virtual  functions  do  not  fulfill  

these  conditions,  objects  of  the  derived  class  may  have  unspecified  behavior.  

Although  most  virtual  functions  are  declared  as  public  members,  they  are  

 

174 C/C++  Legacy Classes



described  with  the  protected  interface  (with  the  exception  of the  destructor  for  

the  streambuf  class)  because  they  are  meant  to  be  overridden  in  the  classes  that  

you  derive  from  streambuf.  

Class  header  file:  iostream.h  

streambuf - Hierarchy List 

   streambuf  

    stdiobuf  

    filebuf  

    strstreambuf

streambuf - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  streambuf  class  can  be  constructed  and  destructed.  

~streambuf  

public:virtual  ~streambuf()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  destructor  for  streambuf  calls  sync().  If  a stream  buffer  has  been  set  up  

and  ios::alloc  is set,  sync()  deletes  the  stream  buffer.  

streambuf  

Overload  1  

public:streambuf(char*  p, long  l) 

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  an  empty  stream  buffer  of  length  l starting  at the  

position  pointed  to  by  p. 

 This  constructor  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  2 

public:streambuf(char*  p, int  l) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  empty  stream  buffer  of  length  l starting  at the  

position  pointed  to  by  p. 

AIX  and  z/OS  Considerations  

 This  constructor  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  3 

public:streambuf(char*  p, int  l, int c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  is obsolete.  It  is included  for  compatibility  with  

the  AT&T  C++  Language  System  Release  1.2.  Use  strstreambuf.  

Overload  4 

public:streambuf()  

 

Chapter  3. Reference 175

|

|

|
|



This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  an  empty  stream  buffer  corresponding  to an  empty  

sequence.  The  values  returned  by  base(),  eback(),  ebuf(),  egptr(),  

epptr(),  pptr(),  gptr(),  and  pbase()  are  initially  all  zero  for  this  

stream  buffer.

Extraction Functions 

Functions  that  extract  characters  from  the  ultimate  producer,  determine  if 

characters  are  waiting  to be  extracted  and  handle  underflow  situations.  

in_avail  

 Returns  the  number  of characters  that  are  available  to be  extracted  from  

the  get  area  of  the  stream  buffer  object.  You can  extract  the  number  of 

characters  equal  to  the  value  that  in_avail()  returns  without  causing  an 

error. 

Overload  1  

public:int  in_avail()  

This  is supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 This  function  returns  an  int  value  for  32-bit  applications.  It 

is not  available  for  64-bit  applications.
Overload  2 

public:long  in_avail()  

This  is supported  on  

AIX
   

z/OS
   

 This  function  returns  a long  value  for  64-bit  applications.  It is not  

available  for  32-bit  applications.
optim_in_avail  

public:int  optim_in_avail()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  true if the  current  get  pointer  is  less  then  the  end  of the  get  area.  

optim_sbumpc  

public:int  optim_sbumpc()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Moves  the  get  pointer  past  one  character  and  returns  the  character  that  it 

moved  past.  

sbumpc  

public:int  sbumpc()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Moves  the  get  pointer  past  one  character  and  returns  the  character  that  it 

moved  past.  sbumpc()  returns  EOF  if the  get  pointer  is  already  at the  end  

of  the  get  area.  

sgetc  

public:int  sgetc()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

176 C/C++  Legacy Classes

|

|
|

|



Returns  the  character  after  the  get  pointer  without  moving  the  get  pointer  

itself.  If no  character  is  available,  sgetc()  returns  EOF. 

 Note:  sgetc()  does  not  change  the  position  of  the  get  pointer.  

sgetn  

Overload  1  

public:long  sgetn(char*  s, long  n) 

This  is  supported  on  

AIX
   

z/OS
   

 Extracts  the  n  characters  following  the  get  pointer,  and  copies  them  

to  the  area  starting  at the  position  pointed  to  by  s. If there  are  

fewer  than  n characters  following  the  get  pointer,  sgetn()  takes  the  

characters  that  are  available  and  stores  them  in  the  position  

pointed  to  by  s. sgetn()  repositions  the  get  pointer  following  the  

extracted  characters  and  returns  the  number  of  extracted  

characters.  

 This  function  is  available  for  64-bit  applications.  It accepts  a long  

argument.  

Overload  2 

public:int  sgetn(char*  s, int n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Extracts  the  n  characters  following  the  get  pointer,  and  copies  them  

to  the  area  starting  at the  position  pointed  to  by  s. If there  are  

fewer  than  n characters  following  the  get  pointer,  sgetn()  takes  the  

characters  that  are  available  and  stores  them  in  the  position  

pointed  to  by  s. sgetn()  repositions  the  get  pointer  following  the  

extracted  characters  and  returns  the  number  of  extracted  

characters.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It accepts  

an  int  argument.
snextc  

public:int  snextc()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Moves  the  get  pointer  forward  one  character  and  returns  the  character  

following  the  new  position  of the  get  pointer.  snextc()  returns  EOF  if the  

get  pointer  is at the  end  of  the  get  area  either  before  or  after  it is moved  

forward.  

underflow  

public:virtual  int underflow()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Takes  characters  from  the  ultimate  producer  and  puts  them  in  the  get  area.  

 The  default  definition  of underflow()  is compatible  with  the  AT&T  C++  

Language  System  Release  1.2  version  of the  stream  package,  but  it is not  

considered  part  of  the  current  I/O  Stream  Library.  Thus  the  default  

 

Chapter  3. Reference 177

|

|

|
|



definition  of  underflow()  should  not  be  used,  and  every  class  derived  from  

streambuf  should  define  underflow()  itself.  

 If  you  derive  underflow()  in  a class  derived  from  streambuf,  it should  

return  the  first  character  in  the  get  area  if the  get  area  is not  empty.  If the  

get  area  is empty,  underflow()  should  create  a get  area  that  is  not  empty  

and  return  the  next  character.  If  no  more  characters  are  available  in the  

ultimate  producer,  underflow()  should  return  EOF  and  leave  the  get  area  

empty.  

xsgetn  

Overload  1  

public:virtual  int xsgetn(char*  s, int  n) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Similar  to  sputn.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  2 

public:virtual  long  xsgetn(char*  s, long  n) 

This  is supported  on  

AIX
   

z/OS
   

 Similar  to  sgetn.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.

Get/Put Pointer Functions 

dbp  

public:void  dbp()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Writes  to  standard  output  the  values  returned  by  the  following  functions:  

v   base()  

v   eback()  

v   ebuf()  

v   egptr()  

v   epptr()  

v   gptr()  

v   pptr()

dbp()  is intended  for  debugging.  streambuf  does  not  specify  anything  

about  the  form  of  the  output.  dbp()  is  considered  part  of  the  protected  

interface  because  the  information  that  it prints  can  only  be  understood  in 

relation  to  that  interface.  It is declared  as  a public  function  so  that  it can  be  

called  anywhere  during  debugging.  

 The  following  example  shows  the  output  produced  by  dbp()  when  it  is 

called  as  part  of  a filebuf  object:  

 

178 C/C++  Legacy Classes

|

|
|

|



#include  < iostream.h  > 

   int  main()  

   { 

      cout  << "Here  is some  sample  output."  << endl;  

      cout.rdbuf()->dbp();  

   } 

If  you  compile  and  run this  example,  your  output  will  look  like  this:  

   Here  is some  sample  output.  

   buf  at 0x90210,  base=0x91010,  ebuf=0x91410,  

   pptr=0x91010,  epptr=0x91410,  eback=0,  gptr=0,  egptr=0  

pptr_non_null  

public:int  pptr_non_null()  

This  is  supported  on  

AIX
   

 Returns  true if the  put  pointer  is not  null.  

seekoff  

public:virtual  streampos  

  seekoff(  streamoff,  

           ios::seek_dir,  

           int  = ios::in|ios::out  ) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Repositions  the  get  or  put  pointer  of  the  ultimate  producer  or  ultimate  

consumer.  seekoff()  does  not  change  the  values  returned  by  gptr()  or  pptr().  

 The  default  definition  of seekoff()  returns  EOF. 

 If  you  define  your  own  seekoff()  function,  it should  return  EOF  if the  

derived  class  does  not  support  repositioning.  If the  class  does  support  

repositioning,  seekoff()  should  return  the  new  position  of the  affected  

pointer,  or  EOF  if an  error  occurs.  

 The  first  argument  is an  offset  from  a position  in  the  ultimate  producer  or  

ultimate  consumer.  The  second  argument  is a position  in the  ultimate  

produce  or  ultimate  consumer.  It can  have  the  following  values:  

v   ios::beg  - the  beginning  of the  ultimate  producer  or  consumer  

v   ios::cur  - the  current  position  in the  ultimate  producer  or  consumer  

v   ios::end  - the  end  of  the  ultimate  producer  or  consumer

The  new  position  of the  affected  pointer  is the  position  specified  by  the  

seek  dir  offset  by  the  value  of the  stream  offset.  If you  derive  your  own  

classes  from  streambuf,  certain  values  of the  seek  dir  may  not  be  valid  

depending  on  the  nature  of  the  ultimate  consumer  or  producer.  

 If  ios::in  is set  in  the  third  argument,  the  seekoff()  should  modify  the  get  

pointer.  If  ios::out  is set,  the  put  pointer  should  be  modified.  If both  ios::in  

and  ios::out  are  set,  both  the  get  pointer  and  the  put  pointer  should  be  

modified.  

seekpos  

public:virtual  streampos  

  seekpos(  streampos,  

           int  = ios::in|ios::out  ) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 179



Repositions  the  get  or  put  pointer  of  the  ultimate  producer  or  consumer  to  

the  streampos  position.  If ios::in  is set,  the  get  pointer  is repositioned.  If 

ios::out  is set,  the  put  pointer  is repositioned.  If both  ios::in  and  ios::out  are  

set,  both  the  get  pointer  and  the  put  pointer  are  affected.  seekpos()  does  

not  change  the  values  returned  by  gptr()  or  pptr().  

 The  default  definition  of  seekpos()  returns  the  return  value  of the  function  

seekoff(streamoff(pos),  ios::beg,  mode).  Thus,  if you  want  to define  seeking  

operations  in  a class  derived  from  streambuf,  you  can  define  seekoff()  and  

use  the  default  definition  of  seekpos().  

 If  you  define  seekpos()  in  a class  derived  from  streambuf,  seekpos()  should  

return  EOF  if the  class  does  not  support  repositioning  or  if the  streampos  

points  to  a position  equal  to  or  greater  than  the  end  of  the  stream.  If not,  

seekpos()  should  return  the  streampos.  

stossc  

public:void  stossc()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Moves  the  get  pointer  forward  one  character.  If  the  get  pointer  is already  at 

the  end  of  the  get  area,  stossc()  does  not  move  it.
base  

protected:char*  base()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  first  byte  of  the  stream  buffer.  The  stream  buffer  

consists  of  the  space  between  the  pointer  returned  by  base()  and  the  

pointer  returned  by  ebuf().  

eback  

protected:char*  eback()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  lower  bound  of  the  space  available  for  the  get  area  

of  the  streambuf.  The  space  between  the  pointer  returned  by  eback()  and  

the  pointer  returned  by  gptr()  is available  for  putback.  

ebuf  

protected:char*  ebuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  byte  after  the  last  byte  of the  stream  buffer.  

egptr  

protected:char*  egptr()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  byte  after  the  last  byte  of the  get  area  of  the  

streambuf.  

epptr  

protected:char*  epptr()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 

180 C/C++  Legacy Classes



Returns  a pointer  to  the  byte  after  the  last  byte  of the  put  area  of the  

streambuf.  

gbump  

Overload  1  

protected:void  gbump(long  n) 

This  is  supported  on  

AIX
   

z/OS
   

 Offsets  the  beginning  of the  get  area  by  the  value  of  n.  The  value  

of  n can  be  positive  or  negative.  gbump()  does  not  check  to  see  if 

the  new  value  returned  by  gptr()  is  valid.  

 The  beginning  of  the  get  area  is  equal  to  the  value  returned  by  

gptr().  

 This  function  is  available  for  64-bit  applications.  It accepts  a long  

argument.  

Overload  2 

protected:void  gbump(int  n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Offsets  the  beginning  of the  get  area  by  the  value  of  n.  The  value  

of  n can  be  positive  or  negative.  gbump()  does  not  check  to  see  if 

the  new  value  returned  by  gptr()  is  valid.  

 The  beginning  of  the  get  area  is  equal  to  the  value  returned  by  

gptr().  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It accepts  

an  int  argument.
gptr  

protected:char*  gptr()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  first  byte  of the  get  area  of  the  streambuf.  The  get  

area  consists  of the  space  between  the  pointer  returned  by  gptr()  and  the  

pointer  returned  by  egptr().  Characters  are  extracted  from  the  stream  buffer  

beginning  at the  character  pointed  to be  gptr().  

pbase  

protected:char*  pbase()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  beginning  of  the  space  available  for  the  put  area  of 

the  streambuf.  Characters  between  the  pointer  returned  by  pbase()  and  the  

pointer  returned  by  pptr()  have  been  stored  in  the  stream  buffer,  but  they  

have  not  been  consumed  by  the  ultimate  consumer.  

pbump  

Overload  1  

protected:void  pbump(long  n) 

This  is  supported  on  

AIX
   

z/OS
   

 

Chapter  3. Reference 181

|

|

|
|

|



Offsets  the  beginning  of the  put  area  by  the  value  of n.  The  value  

of  n can  be  positive  or  negative.  pbump()  does  not  check  to  see  if 

the  new  value  returned  by  pptr()  is valid.  

 The  beginning  of  the  put  area  is equal  to the  value  returned  by  

pptr().  

 This  function  is available  for  64-bit  applications.  It accepts  a long  

argument.  

Overload  2 

protected:void  pbump(int  n) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Offsets  the  beginning  of the  put  area  by  the  value  of n.  The  value  

of  n can  be  positive  or  negative.  pbump()  does  not  check  to  see  if 

the  new  value  returned  by  pptr()  is valid.  

 The  beginning  of  the  put  area  is equal  to the  value  returned  by  

pptr().  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It  accepts  

an  int  argument.
pptr  

protected:char*  pptr()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  beginning  of  the  put  area  of  the  streambuf.  The  

put  area  consists  of the  space  between  the  pointer  returned  by  pptr()  and  

the  pointer  returned  by  epptr().  

setb  

protected:void  setb(char*  b, char*  eb,  int  a = 0) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  beginning  of  the  existing  stream  buffer  (the  pointer  returned  by  

base())  to  the  position  pointed  to by  b,  and  sets  the  end  of  the  stream  

buffer  (the  pointer  returned  by  ebuf())  to  the  position  pointed  to  by  eb.  

 If  a is a nonzero  value,  the  stream  buffer  will  be  deleted  when  setb()  is 

called  again.  If b and  eb  are  both  equal  to  0,  no  stream  buffer  is 

established.  If b is not  equal  to 0,  a stream  buffer  is established,  even  if eb  

is  less  than  b. If  this  is  the  case,  the  stream  buffer  has  length  zero.  

setg  

protected:void  setg(char*  eb,  char*  g, char*  eg)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  beginning  of  the  get  area  of  streambuf  (the  pointer  returned  by 

gptr())  to  g,  and  sets  the  end  of the  get  area  (the  pointer  returned  by  

egptr())  to  eg.  setg()  also  sets  the  beginning  of  the  area  available  for  

putback  (the  pointer  returned  by  eback())  to eb.  

setp  

protected:void  setp(char*  p, char*  ep)  

 

182 C/C++  Legacy Classes

|

|
|



This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  the  spaces  available  for  the  put  area.  Both  the  start  (pbase())  and  the  

beginning  (pptr())  of  the  put  area  are  set  to  the  value  p. 

 Sets  the  beginning  of  the  put  area  of  the  streambuf  (the  pointer  returned  

by  pptr())  to the  position  pointed  to by  p, and  sets  the  end  of  the  put  area  

(the  pointer  returned  by  epptr())  to  the  position  pointed  to by  ep.

Insertion Functions 

Functions  that  insert  characters  into  the  ultimate  consumer,  determine  if characters  

are  waiting  to  be  inserted  and  handle  overflow  situations.  

out_waiting  

 Returns  the  number  of  characters  that  are  in  the  put  area  waiting  to be  

sent  to  the  ultimate  consumer.  

Overload  1  

public:int  out_waiting()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 This  function  returns  an  int  value  for  32-bit  applications.  It 

is not  available  for  64-bit  applications.
Overload  2 

public:long  out_waiting()  

This  is  supported  on  

AIX
   

z/OS
   

 This  function  returns  a long  value  for  64-bit  applications.  It  is not  

available  for  32-bit  applications.
overflow  

public:virtual  int overflow(int  c = EOF)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Called  when  the  put  area  is full,  and  an  attempt  is made  to store  another  

character  in  it.  overflow()  may  be  called  at other  times.  

 The  default  definition  of overflow()  is compatible  with  the  AT&T  C++  

Language  System  Release  1.2  version  of the  stream  package,  but  it is not  

considered  part  of  the  current  I/O  Stream  Library.  Thus,  the  default  

definition  of overflow()  should  not  be  used,  and  every  class  derived  from  

streambuf  should  define  overflow()  itself.  

 The  definition  of  overflow()  in  your  classes  derived  from  streambuf  should  

cause  the  ultimate  consumer  to  consume  the  characters  in  the  put  area,  call  

setp()  to establish  a new  put  area,  and  store  the  argument  c in  the  put  area  

if c does  not  equal  EOF. overflow()  should  return  EOF  if an  error  occurs,  

and  it  should  return  a value  not  equal  to  EOF  otherwise.  

pbackfail  

public:virtual  int pbackfail(int  c) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Called  when  both  of the  following  conditions  are  true: 

 

Chapter  3. Reference 183

|

|
|

|



v   An  attempt  has  been  made  to  put  back  a character.  

v   There  is  no  room  in  the  putback  area.  The  pointer  returned  by  eback()  

equals  the  pointer  returned  by  gptr().

The  default  definition  of  pbackfail()  returns  EOF. 

 If  you  define  pbackfail()  in  your  own  classes,  your  definition  of  pbackfail()  

should  attempt  to  deal  with  the  full  putback  area  by,  for  instance,  

repositioning  the  get  pointer  of  the  ultimate  producer.  If this  is possible,  

pbackfail()  should  return  the  argument  c.  If  not,  pbackfail()  should  return  

EOF. 

sputbackc  

public:int  sputbackc(char  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Moves  the  get  pointer  back  one  character.  The  get  pointer  may  simply  

move,  or  the  ultimate  producer  may  rearrange  the  internal  data  structures  

so  that  the  character  c is  saved.  The  argument  c must  equal  the  character  

that  precedes  the  get  pointer  in the  stream  buffer.  The  effect  of sputbackc()  

is  undefined  if c is not  equal  to the  character  before  the  get  pointer.  

sputbackc()  returns  EOF  if an  error  occurs.  The  conditions  that  cause  errors  

depend  on  the  derived  class.  

sputc  

public:int  sputc(int  c) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Stores  the  argument  c after  the  put  pointer  and  moves  the  put  pointer  past  

the  stored  character.  If there  is enough  space  in  the  stream  buffer,  this  will  

extend  the  size  of the  put  area.  sputc()  returns  EOF  if an  error  occurs.  The  

conditions  that  cause  errors  depend  on  the  derived  class.  

sputn  

Overload  1  

public:int  sputn(const  char*  s, int n) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Stores  the  n characters  starting  at s after  the  put  pointer  and  moves  

the  put  pointer  to the  end  of the  series.  sputn()  returns  the  number  

of  characters  successfully  stored.  If an  error  occurs,  sputn()  returns  

a value  less  than  n. 

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It  accepts  

an  int  argument.
Overload  2 

public:long  sputn(const  char*  s, long  n) 

This  is supported  on  

AIX
   

z/OS
   

 Stores  the  n characters  starting  at s after  the  put  pointer  and  moves  

the  put  pointer  to the  end  of the  series.  sputn()  returns  the  number  

of  characters  successfully  stored.  If an  error  occurs,  sputn()  returns  

a value  less  than  n. 

 

184 C/C++  Legacy Classes

|

|
|

|



This  function  is  available  for  64-bit  applications.  It accepts  a long  

argument.
xsputn  

Overload  1  

public:virtual  int xsputn(const  char*  s, int  n) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Similar  to sputn.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  use  when  building  32-bit  

applications.  The  second  argument  is  an  int  value.
Overload  2 

public:virtual  long  xsputn(const  char*  s, long  n) 

This  is  supported  on  

AIX
   

z/OS
   

 Similar  to sputn.  

 This  function  is  available  for  use  when  building  64-bit  applications.  

The  second  argument  is a long  value.

Locking functions 

streambuf_resource  

public:IRTLResource&  streambuf_resource()  const  

This  is  supported  on  

z/OS
  

Stream Buffer Functions 

Functions  that  work  with  the  underlying  streambuf  object.  

setbuf  

Overload  1  

public:streambuf*  setbuf(unsigned  char*  p, long  len)  

This  is  supported  on  

AIX
   

z/OS
   

 Sets  up  a stream  buffer  consisting  of the  array  of  bytes  starting  at  p 

with  length  len.  

 This  function  is  different  from  setb().  setb()  sets  pointers  to  an  

existing  stream  buffer.  setbuf(),  however,  creates  the  stream  buffer. 

 The  default  definition  of  setbuf()  sets  up  the  stream  buffer  if the  

streambuf  object  does  not  already  have  a stream  buffer.  

 If  you  define  setbuf()  in a class  derived  from  streambuf,  setbuf()  

can  either  accept  or  ignore  a request  for  an  unbuffered  streambuf  

object.  The  call  to  setbuf()  is a request  for  an  unbuffered  streambuf  

object  if p equals  0 or  len  equals  0. setbuf()  should  return  a pointer  

to  the  streambuf  if it accepts  the  request,  and  0 otherwise.  

 This  function  is  available  for  64-bit  applications.  It accepts  an  long  

argument.  

Overload  2 

public:virtual  streambuf*  setbuf(char*  p, long  len)  

 

Chapter  3. Reference 185

|

|
|

|

|



This  is supported  on  

AIX
   

z/OS
   

 Sets  up  a stream  buffer  consisting  of the  array  of bytes  starting  at  p 

with  length  len.  

 This  function  is different  from  setb().  setb()  sets  pointers  to  an  

existing  stream  buffer.  setbuf(),  however,  creates  the  stream  buffer.  

 The  default  definition  of  setbuf()  sets  up  the  stream  buffer  if the  

streambuf  object  does  not  already  have  a stream  buffer.  

 If  you  define  setbuf()  in  a class  derived  from  streambuf,  setbuf()  

can  either  accept  or  ignore  a request  for  an  unbuffered  streambuf  

object.  The  call  to setbuf()  is a request  for  an  unbuffered  streambuf  

object  if p equals  0 or  len  equals  0.  setbuf()  should  return  a pointer  

to  the  streambuf  if it  accepts  the  request,  and  0 otherwise.  

 This  function  is available  for  64-bit  applications.  It accepts  an  long  

argument.  

Overload  3 

public:streambuf*  setbuf(char*  p,  int len,  int  count)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  function  is obsolete.  The  I/O  Stream  Library  includes  it  to  be  

compatible  with  AT&T  C++  Language  System  Release  1.2  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It  accepts  

an  int  argument.
Overload  4 

public:virtual  streambuf*  setbuf(char*  p, int  len)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Sets  up  a stream  buffer  consisting  of the  array  of bytes  starting  at  p 

with  length  len.  

 This  function  is different  from  setb().  setb()  sets  pointers  to  an  

existing  stream  buffer.  setbuf(),  however,  creates  the  stream  buffer.  

 The  default  definition  of  setbuf()  sets  up  the  stream  buffer  if the  

streambuf  object  does  not  already  have  a stream  buffer.  

 If  you  define  setbuf()  in  a class  derived  from  streambuf,  setbuf()  

can  either  accept  or  ignore  a request  for  an  unbuffered  streambuf  

object.  The  call  to setbuf()  is a request  for  an  unbuffered  streambuf  

object  if p equals  0 or  len  equals  0.  setbuf()  should  return  a pointer  

to  the  streambuf  if it  accepts  the  request,  and  0 otherwise.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It  accepts  

an  int  argument.
Overload  5 

public:streambuf*  setbuf(unsigned  char*  p, int  len)  

 

186 C/C++  Legacy Classes

|

|

|
|

|

|
|



This  is  supported  on  

AIX
   

400
   

z/OS
   

 Sets  up  a stream  buffer  consisting  of the  array  of  bytes  starting  at  p 

with  length  len.  

 This  function  is  different  from  setb().  setb()  sets  pointers  to  an  

existing  stream  buffer.  setbuf(),  however,  creates  the  stream  buffer. 

 The  default  definition  of  setbuf()  sets  up  the  stream  buffer  if the  

streambuf  object  does  not  already  have  a stream  buffer.  

 If  you  define  setbuf()  in a class  derived  from  streambuf,  setbuf()  

can  either  accept  or  ignore  a request  for  an  unbuffered  streambuf  

object.  The  call  to  setbuf()  is a request  for  an  unbuffered  streambuf  

object  if p equals  0 or  len  equals  0. setbuf()  should  return  a pointer  

to  the  streambuf  if it accepts  the  request,  and  0 otherwise.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  It accepts  

an  int  argument.
sync  

public:virtual  int sync()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Synchronizes  the  stream  buffer  with  the  ultimate  producer  or  the  ultimate  

consumer.  

 The  default  definition  of sync()  returns  0 if either  of the  following  

conditions  is true: 

v   The  get  area  is empty  and  there  are  no  characters  waiting  to  go  to the  

ultimate  consumer.  

v   No  stream  buffer  has  been  allocated  for  the  streambuf.

Otherwise,  sync()  returns  EOF. 

 If  you  define  sync()  in  a class  derived  from  streambuf,  it  should  send  any  

characters  that  are  stored  in  the  put  area  to the  ultimate  consumer,  and  (if  

possible)  send  any  characters  that  are  waiting  in  the  get  area  back  to  the  

ultimate  producer.  When  sync()  returns,  both  the  put  area  and  the  get  area  

should  be  empty.  sync()  should  return  EOF  if an  error  occurs.
allocate  

protected:int  allocate()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Attempts  to  set  up  a stream  buffer.  allocate()  returns  the  following  values:  

v   0, if the  streambuf  has  a stream  buffer  set  up  (that  is,  base()  returns  a 

nonzero  value),  or  if unbuffered()  returns  a nonzero  value.  allocate()  

does  not  do  any  further  processing  if it  returns  0. 

v   1, if allocate()  does  set  up  a stream  buffer.  

v   EOF, if the  attempt  to  allocate  space  for  the  stream  buffer  fails.

allocate()  is not  called  by  any  other  nonvirtual  member  function  of  

streambuf.  

blen  

 Returns  the  length  (in  bytes)  of the  stream  buffer.  

 

Chapter  3. Reference 187

|

|
|



Overload  1  

protected:long  blen()  const  

This  is supported  on  

AIX
   

z/OS
   

 The  value  returned  is a long  when  building  64-bit  aplications.  This  

function  is not  available  for  32-bit  applications.  

Overload  2 

protected:int  blen()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 The  value  returned  is an  int  when  building  32-bit  

applications.  This  function  is not  available  for  64-bit  

applications.
doallocate  

protected:virtual  int  doallocate()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Called  when  allocate()  determines  that  space  is needed  for  a stream  buffer.  

 The  default  definition  of  doallocate()  attempts  to  allocate  space  for  a 

stream  buffer  using  the  operator  new. 

 If  you  define  your  own  version  of  doallocate(),  it must  call  setb()  to 

provide  space  for  a stream  buffer  or  return  EOF  if it cannot  allocate  space.  

doallocate()  should  only  be  called  if unbuffered()  and  base()  return  zero.  

 In  your  own  version  of doallocate(),  you  provide  the  size  of the  buffer  for  

your  constructor.  Assign  the  buffer  size  you  want  to  a variable  using  a 

#define  statement.  This  variable  can  then  be  used  in  the  constructor  for  

your  doallocate()  function  to  define  the  size  of  the  buffer.  

unbuffered  

Overload  1  

protected:void  unbuffered(int  unb)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Manipulates  the  private  streambuf  variable  called  the  buffering  

state.  If the  buffering  state  is nonzero,  a call  to allocate()  does  not  

set  up  a stream  buffer.  

 Changes  the  value  of the  buffering  state  to  unb.  

Overload  2 

protected:int  unbuffered()  const  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Manipulates  the  private  streambuf  variable  called  the  buffering  

state.  If the  buffering  state  is nonzero,  a call  to allocate()  does  not  

set  up  a stream  buffer.  

 Returns  the  current  value  of the  buffering  state.

 

188 C/C++  Legacy Classes

|

|

|
|
|



streambuf - Inherited Member Functions and Data 

Inherited  Public  Functions  

 None  

Inherited  Public  Data  

 None  

Inherited  Protected  Functions  

 None  

Inherited  Protected  Data  

 None

strstream 

strstream  is  the  class  that  specializes  iostream  to  use  a strstreambuf  for  input  and  

output  with  arrays  of  characters  in  memory.  You can  create  an  strstream  object  by  

associating  the  object  with  a previously  allocated  array  of  characters.  You can  then  

write  output  to  it,  read  input  from  it,  and  apply  other  operations  to  it just  as  you  

would  to  another  type  of  stream.  

Class  header  file:  strstream.h  

strstream - Hierarchy List 

   ios  

    strstreambase  

    strstream

strstream - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  strstream  class  can  be  constructed  and  destructed.  

~strstream  

public:~strstream()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 The  strstream  destructor  frees  the  space  allocated  by  the  strstream  

constructor.  

strstream  

Overload  1  

public:strstream(char*  str,  long  size,  int mode)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  and  

inserted  into  the  array  of bytes  that  starts  at the  position  pointed  to  

by  str  with  a length  of size  bytes.  If ios::ate  or  ios::app  is set  in  

mode,  str points  to  a null-terminated  string  and  insertions  begin  at  

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  istream::seekg()  function  to  

reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

 

Chapter  3. Reference 189

|



Overload  2 

public:strstream(char*  str,  int  size,  int  mode)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  and  

inserted  into  the  array  of bytes  that  starts  at  the  position  pointed  to  

by  str  with  a length  of size  bytes.  If ios::ate  or  ios::app  is set  in  

mode,  str  points  to a null-terminated  string  and  insertions  begin  at 

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  istream::seekg()  function  to 

reposition  the  get  pointer  anywhere  in  this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  3 

public:strstream(signed  char*  str,  long  size,  int mode)  

This  is supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  and  

inserted  into  the  array  of bytes  that  starts  at  the  position  pointed  to  

by  str  with  a length  of size  bytes.  If ios::ate  or  ios::app  is set  in  

mode,  str  points  to a null-terminated  string  and  insertions  begin  at 

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  istream::seekg()  function  to 

reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  4 

public:strstream(unsigned  char*  str,  int  size,  int  mode)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  and  

inserted  into  the  array  of bytes  that  starts  at  the  position  pointed  to  

by  str  with  a length  of size  bytes.  If ios::ate  or  ios::app  is set  in  

mode,  str  points  to a null-terminated  string  and  insertions  begin  at 

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  istream::seekg()  function  to 

reposition  the  get  pointer  anywhere  in  this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  5 

public:strstream(signed  char*  str,  int  size,  int  mode)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  and  

inserted  into  the  array  of bytes  that  starts  at  the  position  pointed  to  

by  str  with  a length  of size  bytes.  If ios::ate  or  ios::app  is set  in  

mode,  str  points  to a null-terminated  string  and  insertions  begin  at 

 

190 C/C++  Legacy Classes

|

|
|

|

|

|
|



the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  istream::seekg()  function  to  

reposition  the  get  pointer  anywhere  in  this  array.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  6 

public:strstream(unsigned  char*  str,  long  size,  int  mode)  

This  is  supported  on  

AIX
   

z/OS
   

 This  constructor  specifies  that  characters  should  be  extracted  and  

inserted  into  the  array  of bytes  that  starts  at the  position  pointed  to  

by  str  with  a length  of size  bytes.  If ios::ate  or  ios::app  is set  in  

mode,  str points  to  a null-terminated  string  and  insertions  begin  at  

the  null  character.  Otherwise,  insertions  begin  at  the  position  

pointed  to  by  str. You can  use  the  istream::seekg()  function  to  

reposition  the  get  pointer  anywhere  in  this  array.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  7 

public:strstream()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  no  arguments  and  specifies  that  space  is 

allocated  dynamically  for  the  stream  buffer  that  is  attached  to  the  

strstream  object.

Stream Buffer Functions 

str  

public:char*  str()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  stream  buffer  attached  to  the  strstream  and  calls  

freeze()  with  a nonzero  value  to  prevent  the  stream  buffer  from  being  

deleted.  If  the  stream  buffer  was  constructed  with  an  explicit  array,  the  

value  returned  is a pointer  to  that  array.  If  the  stream  buffer  was  

constructed  in dynamic  mode,  str  points  to the  dynamically  allocated  area.  

 Until  you  call  str(),  deleting  the  dynamically  allocated  stream  buffer  is the  

responsibility  of the  strstream  object.  After  str()  has  been  called,  the  calling  

application  has  responsibility  for  the  dynamically  allocated  stream  buffer.  

 Note:  If  your  application  calls  str()  without  calling  freeze()  with  a nonzero  

argument  (to  unfreeze  the  strstream),  or  without  explicitly  deleting  the  

array  of  characters  returned  by  the  call  to  str(),  the  array  of  characters  will  

not  be  deallocated  by  the  strstream  when  it is destroyed.  This  situation  is a 

potential  source  of a memory  leak.

 

Chapter  3. Reference 191

|

|
|

|



strstream - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

 strstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

rdbuf  194 

  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

  

Inherited  Protected  Functions  

 strstreambase  

Definition  

Page  

Number  Definition  

Page  

Number  

~strstreambase  193 strstreambase  193
  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

 

 

192 C/C++  Legacy Classes



Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

strstreambase 

The  strstreambase  class  is an  internal  class  that  provides  common  functions  for  the  

classes  that  are  derived  from  it;  strstream,  istrstream,  and  ostrstream.  Do  not  use  

the  strstreambase  class  directly.  

Class  header  file:  strstream.h  

strstreambase - Hierarchy List 

   ios  

    strstreambase  

    istrstream  

    ostrstream  

    strstream

strstreambase - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  strstreambase  class  can  be  constructed  and  destructed  by  objects  

derived  from  it.  Do  not  use  these  functions  directly.  

~strstreambase  

protected:~strstreambase()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Destructs  a strstreambase  object.  

strstreambase  

Overload  1  

protected:strstreambase(char*,  long,  char*)  

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  a strstreambase  object.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  2 

protected:strstreambase(char*,  int,  char*)  

 

Chapter  3. Reference 193

|



This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a strstreambase  object.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  3 

protected:strstreambase()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a strstreambase  object.

Misc 

rdbuf  

public:strstreambuf*  rdbuf()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Returns  a pointer  to  the  stream  buffer  that  the  strstreambase  object  is 

attached  to.

strstreambase - Inherited Member Functions and Data 

Inherited  Public  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

~ios  92 bad 94 

bitalloc  99 clear  94 

eof  94 fail  94 

fill  95 flags  95 

good  94 ios 92 

ios_resource  98 iword  99 

operator  ! 99 operator  const  void  * 99 

operator  void  * 99 precision  95 

pword  99 rdbuf  99 

rdstate  94 setf  96 

skip  97 sync_with_stdio  100 

tie  100 unsetf  97 

width  97 xalloc  101
  

Inherited  Public  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

adjustfield  92 basefield  92 

floatfield  92 

 

 

194 C/C++  Legacy Classes

|

|
|



Inherited  Protected  Functions  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

init  98 ios 92 

setstate  95 

  

Inherited  Protected  Data  

 ios  

Definition  

Page  

Number  Definition  

Page  

Number  

( * stdioflush  ) ( ) 101 assign_private  92 

bp 93 delbuf  93 

isfx_special  93 ispecial  93 

osfx_special  93 ospecial  93 

state  93 x_fill  98 

x_flags  93 x_precision  98 

x_tie  93 x_width  98
  

strstreambuf 

This  class  specializes  streambuf  to  use  an  array  of bytes  in  memory  as  the  source  

or  target  of  data.  

Class  header  file:  strstream.h  

strstreambuf - Hierarchy List 

   streambuf  

    strstreambuf

strstreambuf - Member Functions and Data by Group 

Constructors & Destructor 

Objects  of  the  strstreambuf  class  can  be  constructed  and  destructed.  

~strstreambuf  

public:~strstreambuf()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 If  freeze()  has  not  been  called  for  the  strstreambuf  object  and  a stream  

buffer  is  associated  with  the  strstreambuf  object,  the  strstreambuf  

destructor  frees  the  space  allocated  by  the  strstreambuf  constructor.  The  

effect  of  the  destructor  depends  on  the  constructor  used  to create  the  

strstreambuf  object:  

v   If  you  created  the  strstreambuf  object  using  the  constructor  that  takes  

two  pointers  to functions  as  arguments,  the  destructor  frees  the  space  

allocated  by  the  destructor  by  calling  the  function  pointed  to by  the  

second  argument  to  the  constructor.  

 

Chapter  3. Reference 195



v   If  you  created  the  strstreambuf  object  using  any  of  the  other  

constructors,  the  destructor  calls  the  delete  operator  to free  the  space  

allocated  by  the  constructor.
strstreambuf  

Overload  1  

public:strstreambuf(long)  

This  is supported  on  

AIX
   

z/OS
   

 This  constructor  takes  one  argument  and  constructs  an  empty  

strstreambuf  object  in  dynamic  mode.  The  initial  size  of  the  stream  

buffer  will  be  at least  as  long  as  the  argument  in  bytes.  

 This  constructor  is available  for  64-bit  applications.  It  accepts  a 

long  argument.  

Overload  2 

public:strstreambuf(int)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  one  argument  and  constructs  an  empty  

strstreambuf  object  in  dynamic  mode.  The  initial  size  of  the  stream  

buffer  will  be  at least  as  long  as  the  argument  in  bytes.  

AIX  and  z/OS  Considerations  

 This  constructor  is available  for  32-bit  applications.  It 

accepts  an  int  argument.
Overload  3 

public:strstreambuf(char*  b,  int size,  char*  pstart  = 0) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a strstreambuf  object  with  a stream  buffer  that  begins  at 

the  position  pointed  to  by  b.  The  nature  of the  stream  buffer  

depends  on  the  value  of  size.  

v   If  size  is positive,  the  size  bytes  following  the  position  pointed  to 

by  b make  up  the  stream  buffer.  

v   If  size  equals  0,  b points  to the  beginning  of a null-terminated  

string,  and  the  bytes  of  that  string,  excluding  the  terminating  

null  character,  will  make  up  the  stream  buffer.  

v   If  size  is negative,  the  stream  buffer  has  an  indefinite  length.  The  

get  pointer  of  the  stream  buffer  is initialized  to b,  and  the  put  

pointer  is  initialized  to  pstart.

Regardless  of  the  values  of  size,  if the  value  of pstart  is 0,  the  get  

area  will  include  the  entire  stream  buffer,  and  insertions  will  caues  

errors.  

AIX  and  z/OS  Considerations  

 This  constructor  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  4 

public:strstreambuf(  unsigned  char*  b,  

              int size,  

              unsigned  char*  pstart  = 0 ) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 

196 C/C++  Legacy Classes

|

|

|
|

|

|
|



Constructs  a strstreambuf  object  with  a stream  buffer  that  begins  at  

the  position  pointed  to  by  b.  The  nature  of  the  stream  buffer  

depends  on  the  value  of size.  

v   If size  is positive,  the  size  bytes  following  the  position  pointed  to 

by  b  make  up  the  stream  buffer.  

v   If size  equals  0,  b points  to the  beginning  of  a null-terminated  

string,  and  the  bytes  of  that  string,  excluding  the  terminating  

null  character,  will  make  up  the  stream  buffer.  

v   If size  is negative,  the  stream  buffer  has  an  indefinite  length.  The  

get  pointer  of  the  stream  buffer  is initialized  to  b,  and  the  put  

pointer  is initialized  to  pstart.

Regardless  of the  values  of  size,  if the  value  of pstart  is 0,  the  get  

area  will  include  the  entire  stream  buffer,  and  insertions  will  caues  

errors.  

AIX  and  z/OS  Considerations  

 This  constructor  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  5 

public:strstreambuf(  unsigned  char*  b, 

              long  size,  

              unsigned  char*  pstart  = 0 ) 

This  is  supported  on  

AIX
   

z/OS
   

 Constructs  a strstreambuf  object  with  a stream  buffer  that  begins  at  

the  position  pointed  to  by  b.  The  nature  of  the  stream  buffer  

depends  on  the  value  of size.  

v   If size  is positive,  the  size  bytes  following  the  position  pointed  to 

by  b  make  up  the  stream  buffer.  

v   If size  equals  0,  b points  to the  beginning  of  a null-terminated  

string,  and  the  bytes  of  that  string,  excluding  the  terminating  

null  character,  will  make  up  the  stream  buffer.  

v   If size  is negative,  the  stream  buffer  has  an  indefinite  length.  The  

get  pointer  of  the  stream  buffer  is initialized  to  b,  and  the  put  

pointer  is initialized  to  pstart.

Regardless  of the  values  of  size,  if the  value  of pstart  is 0,  the  get  

area  will  include  the  entire  stream  buffer,  and  insertions  will  caues  

errors.  

 This  constructor  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  6 

public:strstreambuf(  void  * ( * a ) ( long  ), 

              void  ( * f ) ( void  * ) ) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  two  arguments  and  creates  an  empty  

strstreambuf  object  in  dynamic  mode.  a is a pointer  to  the  function  

that  is used  to  allocate  space.  a is passed  a long  value  that  equals  

the  number  of bytes  that  it is supposed  to  allocate.  If the  value  of  a 

is  0, the  operator  new  is  used  to allocate  space.  f is a pointer  to  the  

function  that  is used  to free  space.  f is passed  an  argument  that  is  a 

pointer  to  the  array  of  bytes  that  a allocated.  If f has  a value  of 0,  

the  operator  delete  is used  to  free  space.  

 

Chapter  3. Reference 197

|

|
|

|



Overload  7 

public:strstreambuf(  signed  char*  b, 

              int size,  

              signed  char*  pstart  = 0 ) 

This  is supported  on  

AIX
   

400
   

z/OS
   

 Constructs  a strstreambuf  object  with  a stream  buffer  that  begins  at 

the  position  pointed  to  by  b.  The  nature  of the  stream  buffer  

depends  on  the  value  of  size.  

v   If  size  is positive,  the  size  bytes  following  the  position  pointed  to 

by  b make  up  the  stream  buffer.  

v   If  size  equals  0,  b points  to the  beginning  of a null-terminated  

string,  and  the  bytes  of  that  string,  excluding  the  terminating  

null  character,  will  make  up  the  stream  buffer.  

v   If  size  is negative,  the  stream  buffer  has  an  indefinite  length.  The  

get  pointer  of  the  stream  buffer  is initialized  to b,  and  the  put  

pointer  is  initialized  to  pstart.

Regardless  of  the  values  of  size,  if the  value  of pstart  is 0,  the  get  

area  will  include  the  entire  stream  buffer,  and  insertions  will  caues  

errors.  

AIX  and  z/OS  Considerations  

 This  constructor  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
Overload  8 

public:strstreambuf(  signed  char*  b, 

              long  size,  

              signed  char*  pstart  = 0 ) 

This  is supported  on  

AIX
   

z/OS
   

 Constructs  a strstreambuf  object  with  a stream  buffer  that  begins  at 

the  position  pointed  to  by  b.  The  nature  of the  stream  buffer  

depends  on  the  value  of  size.  

v   If  size  is positive,  the  size  bytes  following  the  position  pointed  to 

by  b make  up  the  stream  buffer.  

v   If  size  equals  0,  b points  to the  beginning  of a null-terminated  

string,  and  the  bytes  of  that  string,  excluding  the  terminating  

null  character,  will  make  up  the  stream  buffer.  

v   If  size  is negative,  the  stream  buffer  has  an  indefinite  length.  The  

get  pointer  of  the  stream  buffer  is initialized  to b,  and  the  put  

pointer  is  initialized  to  pstart.

Regardless  of  the  values  of  size,  if the  value  of pstart  is 0,  the  get  

area  will  include  the  entire  stream  buffer,  and  insertions  will  caues  

errors.  

 This  constructor  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  9 

public:strstreambuf(char*  b,  long  size,  char*  pstart  = 0) 

This  is supported  on  

AIX
   

z/OS
   

 

198 C/C++  Legacy Classes

|

|
|

|

|



Constructs  a strstreambuf  object  with  a stream  buffer  that  begins  at  

the  position  pointed  to  by  b.  The  nature  of  the  stream  buffer  

depends  on  the  value  of size.  

v   If size  is positive,  the  size  bytes  following  the  position  pointed  to 

by  b  make  up  the  stream  buffer.  

v   If size  equals  0,  b points  to the  beginning  of  a null-terminated  

string,  and  the  bytes  of  that  string,  excluding  the  terminating  

null  character,  will  make  up  the  stream  buffer.  

v   If size  is negative,  the  stream  buffer  has  an  indefinite  length.  The  

get  pointer  of  the  stream  buffer  is initialized  to  b,  and  the  put  

pointer  is initialized  to  pstart.

Regardless  of the  values  of  size,  if the  value  of pstart  is 0,  the  get  

area  will  include  the  entire  stream  buffer,  and  insertions  will  caues  

errors.  

 This  constructor  is available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  10  

public:strstreambuf()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 This  constructor  takes  no  arguments  and  constructs  an  empty  

strstreambuf  object  in  dynamic  mode.  Space  will  be  allocated  

automatically  to  accommodate  the  characters  that  are  put  into  the  

strstreambuf  objet.  This  space  will  be  allocated  using  the  operator  

new  and  deallocated  using  the  operator  delete.  The  characters  that  

are  already  stored  by  the  strstreambuf  object  may  have  to be  

copied  when  new  space  is allocated.  If  you  know  you  are  going  to  

insert  many  characters  into  an  strstreambuf  object,  you  can  give  

the  I/O  Stream  Library  an  estimate  of  the  size  of the  object  before  

you  create  it by  calling  strstreambuf::setbuf().

Get/Put Pointer Functions 

seekoff  

public:virtual  streampos  seekoff(streamoff,  ios::seek_dir,  int)  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Repositions  the  get  or  put  pointer  in  the  array  of  bytes  in  memory  that  

serves  as  the  ultimate  producer  or  consumer.  

 If  you  constructed  the  strstreambuf  in  dynamic  mode,  the  results  of  

seekoff()  are  unpredictable.  Therefore,  do  not  use  seekoff()  with  an  

strstreambuf  object  that  you  created  in  dynamic  mode.  

 If  you  did  not  construct  the  strstreambuf  object  in dynamic  mode,  seekoff()  

attempts  to  reposition  the  get  pointer  or  the  put  pointer,  depending  on  the  

value  of  the  third  argument,  the  mode.  If ios::in  is set,  seekoff()  repositions  

the  get  pointer.  If  ios::out  is set,  seekoff()  repositions  the  put  pointer.  If 

both  ios::in  and  ios::out  are  set,  seekoff()  repositions  both  pointers.  

 seekoff()  attempts  to  reposition  the  affected  pointer  to  the  value  of 

ios::seek_dir  + streamoff.  ios::seek_dir  can  have  the  following  values:  

ios::beg,  ios::cur,  or  ios::end.  

 

Chapter  3. Reference 199



If  the  value  of ios::seek_dir  + streamoff  is equal  to  or  greater  than  the  end  

of  the  array,  the  value  is  not  valid  and  seekoff()  returns  EOF. Otherwise,  

seekoff()  sets  the  affected  pointer  to this  value  and  returns  this  value.

Insertion & Extraction Functions 

overflow  

public:virtual  int overflow(int)  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Causes  the  ultimate  consumer  to consume  the  characters  in  the  put  area  

and  calls  setp()  to  establish  a new  put  area.  The  argument  is stored  in the  

new  put  area  if its  value  is not  equal  to  EOF. 

pcount  

 This  function  is internal  and  should  not  be  used.  

Overload  1  

public:long  pcount()  

This  is supported  on  

AIX
   

z/OS
   

 This  function  returns  a long  for  64-bit  applications.  It is not  

available  for  32-bit  applications.  

Overload  2 

public:int  pcount()  

This  is supported  on  

AIX
   

400
   

z/OS
   

AIX  and  z/OS  Considerations  

 This  function  returns  an  int  for  32-bit  applications.  It  is not  

available  for  64-bit  applications.
underflow  

public:virtual  int underflow()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 If  the  get  area  is not  empty,  underflow()  returns  the  first  character  in  the  

get  area.  If  the  get  area  is empty,  underflow()  creates  a new  get  area  that  is 

not  empty  and  returns  the  first  character.  If  no  more  characters  are  

available  in  the  ultimate  producer,  underflow()  returns  EOF  and  leaves  the  

get  area  empty.

Stream Buffer Functions 

doallocate  

public:virtual  int doallocate()  

This  is supported  on  

AIX
   

400
   

z/OS
   

 Attempts  to  allocate  space  for  a stream  buffer.  If you  created  the  

strstreambuf  object  using  the  constructor  that  takes  two  pointers  to  

functions  as  arguments,  doallocate()  allocates  space  for  the  stream  buffer  

by  calling  the  function  pointed  to by  the  first  argument  to  the  constructor.  

Otherwise,  doallocate()  calls  the  operator  new  to  allocate  space  for  the  

stream  buffer.  

freeze  

public:void  freeze(int  n = 1) 

 

200 C/C++  Legacy Classes

|

|

|
|



This  is  supported  on  

AIX
   

400
   

z/OS
   

 Controls  whether  the  array  that  makes  up  a stream  buffer  can  be  deleted  

automatically.  If n has  a nonzero  value,  the  array  is not  deleted  

automatically.  If n equals  0, the  array  is deleted  automatically  when  more  

space  is  needed  or  when  the  strstreambuf  object  is deleted.  If you  call  

freeze()  with  a nonzero  argument  for  a strstreambuf  object  that  was  

allocated  in  dynamic  mode,  any  attempts  to  put  characters  in  the  stream  

buffer  may  result  in  errors.  Therefore,  you  should  avoid  insertions  to  such  

stream  buffers  because  the  results  are  unpredictable.  However,  if you  have  

a ″frozen″  stream  buffer  and  you  call  freeze()  with  an  argument  equal  to  0,  

you  can  put  characters  in  the  stream  buffer  again.  

 Only  space  that  is acquired  through  dynamic  allocation  is ever  freed.  

isfrozen  

public:int  isfrozen()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 Returns  true if the  stream  buffer  is frozen.  

setbuf  

Overload  1  

public:virtual  streambuf*  setbuf(char*  p, long  l) 

This  is  supported  on  

AIX
   

z/OS
   

 setbuf()  records  the  buffer  size.  The  next  time  that  the  strstreambuf  

object  dynamically  allocates  a stream  buffer,  the  stream  buffer  is at  

least  l bytes  long.  

 Note:  If  you  call  setbuf()  for  an  strstreambuf  object,  you  must  call  

it  with  the  first  argument  equal  to  0.  

 This  function  is  available  for  64-bit  applications.  The  second  

argument  is a long  value.  

Overload  2 

public:virtual  streambuf*  setbuf(char*  p, int  l) 

This  is  supported  on  

AIX
   

400
   

z/OS
   

 setbuf()  records  the  buffer  size.  The  next  time  that  the  strstreambuf  

object  dynamically  allocates  a stream  buffer,  the  stream  buffer  is at  

least  l bytes  long.  

 Note:  If  you  call  setbuf()  for  an  strstreambuf  object,  you  must  call  

it  with  the  first  argument  equal  to  0.  

AIX  and  z/OS  Considerations  

 This  function  is available  for  32-bit  applications.  The  

second  argument  is an  int  value.
str  

public:char*  str()  

This  is  supported  on  

AIX
   

400
   

z/OS
   

 

Chapter  3. Reference 201

|

|

|
|



Returns  a pointer  to  the  first  character  in  the  stream  buffer  and  calls  

freeze()  with  a nonzero  argument.  Any  attempts  to put  characters  in  the  

stream  buffer  may  result  in  errors.  If  the  strstreambuf  object  was  created  

with  an  explicit  array  (that  is,  the  strstreambuf  constructor  with  three  

arguments  was  used),  str()  returns  a pointer  to  that  array.  If the  

strstreambuf  object  was  created  in  dynamic  mode  and  nothing  is stored  in 

the  array,  str()  may  return  0.

strstreambuf - Inherited Member Functions and Data 

Inherited  Public  Functions  

 streambuf  

Definition  

Page  

Number  Definition  

Page  

Number  

~streambuf  175 dbp 178 

in_avail  176 optim_in_avail  176 

optim_sbumpc  176 out_waiting  183 

overflow  183 pbackfail  183 

pptr_non_null  179 sbumpc  176 

seekoff  179 seekpos  179 

setbuf  185 sgetc  176 

sgetn  177 snextc  177 

sputbackc  184 sputc  184 

sputn  184 stossc  180 

streambuf  175 streambuf_resource  185 

sync  187 xsgetn  178 

xsputn  185 

  

Inherited  Public  Data  

 None  

Inherited  Protected  Functions  

 streambuf  

Definition  

Page  

Number  Definition  

Page  

Number  

allocate  187 base  180 

blen  187 eback  180 

ebuf  180 egptr  180 

epptr  180 gbump  181 

gptr  181 pbase  181 

pbump  181 pptr  182 

setb  182 setg  182 

setp  182 unbuffered  188
  

Inherited  Protected  Data  

 None

 

202 C/C++  Legacy Classes



Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in 

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  give  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law: 

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A  PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  

implied  warranties  in  certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  publication.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of  the  materials  for  this  IBM  

product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  

 

© Copyright  IBM Corp. 1996, 2004 203



Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of  the  

information  which  has  been  exchanged,  should  contact:  

Lab  Director  

IBM  Canada  Ltd.  Laboratory  

B3/KB7/8200/MKM  

8200  Warden  Avenue  

Markham,  Ontario  L6G  1C7  

Canada

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  document  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement  or  any  equivalent  agreement  

between  us.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of  

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of non-IBM  products  should  be  addressed  to  the  

suppliers  of  those  products.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrates  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of  developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM  for  the  purposes  of  developing,  using,  marketing,  or  distributing  application  

programs  conforming  to  IBM’s  application  programming  interfaces.  

Programming Interface Information 

Programming  interface  information  is  intended  to help  you  create  application  

software  using  this  program.  

General-use  programming  interface  allow  the  customer  to  write  application  

software  that  obtain  the  services  of  this  program’s  tools.  

 

204 C/C++  Legacy Classes



However,  this  information  may  also  contain  diagnosis,  modification,  and  tuning  

information.  Diagnosis,  modification,  and  tuning  information  is provided  to  help  

you  debug  your  application  software.  

Note:   Do  not  use  this  diagnosis,  modification,  and  tuning  information  as  a 

programming  interface  because  it  is subject  to  change.  

Trademarks and Service Marks 

The  following  terms  are  trademarks  of  the  International  Business  Machines  

Corporation  in  the  United  States,  or  other  countries,  or  both:  

v   AIX  

v   IBM  

v   OS/390  

v   OS/400  

v   VisualAge  

v   z/OS

UNIX  is  a registered  trademarks  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  

of  others.
 

 

Notices  205



206 C/C++  Legacy Classes





����

  

   

 

  

SC09-7652-02  

              

 


	Contents
	Preface
	Chapter 1. USL I/O Streaming
	The USL I/O Stream Class Hierarchy
	USL I/O Stream Header Files
	The USL I/O Stream Classes and stdio.h
	Use Predefined Streams
	Use Anonymous Streams
	Stream Buffers
	Format State Flags
	Format Stream Output
	Define Your Own Format State Flags

	Manipulators
	Create Manipulators
	Define an APP Parameterized Manipulator
	Define a MANIP Parameterized Manipulator
	Define Nonassociative Parameterized Manipulators

	Thread Safety and USL I/O Streaming
	Basic USL I/O Stream Tasks
	Receive Input from Standard Input
	Display Output on Standard Output or Standard Error
	Flush Output Streams with endl and flush
	Parse Multiple Inputs
	Open a File for Input and Read from the File
	Open a File for Output and Write to the File
	Combine Input and Output of Different Types

	Advanced USL I/O Stream Tasks
	Associate a File with a Standard Input or Output Stream
	Move through a file with filebuf Functions
	Define an Input Operator for a Class Type
	Define an Output Operator for a Class Type
	Correct Input Stream Errors
	Manipulate Strings with the strstream Classes


	Chapter 2. USL Complex Mathematics Library
	Review of Complex Numbers
	Header Files and Constants for the complex and c_exception Classes
	Construct complex Objects

	Mathematical Operators for complex
	Use Mathematical Operators for complex

	Friend Functions for complex
	Use Friend Functions with complex

	Input and Output Operators for complex
	Use complex Input and Output Operators

	Error Functions
	Handle complex Mathematics Errors

	Example: Calculate Roots
	Example: Use Equality and Inequality Operators

	Chapter 3. Reference
	_CCSID_T
	_CCSID_T - Hierarchy List
	_CCSID_T - Member Functions and Data by Group
	Constructors & Destructor
	Query Functions

	_CCSID_T - Inherited Member Functions and Data

	complex
	complex - Hierarchy List
	complex - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operators
	Internal Functions

	complex - Associated Globals
	complex - Inherited Member Functions and Data

	filebuf
	filebuf - Hierarchy List
	filebuf - Member Functions and Data by Group
	Constructors & Destructor
	Attach Functions
	Data members
	Detach Functions
	File Pointer Functions
	Open Functions
	Query Functions
	Stream Buffer Functions

	filebuf - Inherited Member Functions and Data

	fstream
	fstream - Hierarchy List
	fstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	fstream - Inherited Member Functions and Data

	fstreambase
	fstreambase - Hierarchy List
	fstreambase - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Miscellaneous Functions
	Open Functions
	Stream Buffer Functions

	fstreambase - Inherited Member Functions and Data

	ifstream
	ifstream - Hierarchy List
	ifstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	ifstream - Inherited Member Functions and Data

	ios
	ios - Hierarchy List
	ios - Member Functions and Data by Group
	Constructors & Destructor
	Data members
	Error State Functions
	Format State Functions
	Format State Variables
	Initialization Functions
	Locking functions
	Miscellaneous Functions

	ios - Enumerations
	ios - Inherited Member Functions and Data

	iostream
	iostream - Hierarchy List
	iostream - Member Functions and Data by Group
	Constructors & Destructor

	iostream - Inherited Member Functions and Data

	iostream_withassign
	iostream_withassign - Hierarchy List
	iostream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operators

	iostream_withassign - Inherited Member Functions and Data

	istream
	istream - Hierarchy List
	istream - Member Functions and Data by Group
	Constructors & Destructor
	Extract Functions
	Input Operators
	Positioning Functions
	Prefix and Suffix Functions

	istream - Inherited Member Functions and Data

	istream_withassign
	istream_withassign - Hierarchy List
	istream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operator

	istream_withassign - Inherited Member Functions and Data

	istrstream
	istrstream - Hierarchy List
	istrstream - Member Functions and Data by Group
	Constructors & Destructor

	istrstream - Inherited Member Functions and Data

	ofstream
	ofstream - Hierarchy List
	ofstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	ofstream - Inherited Member Functions and Data

	ostream
	ostream - Hierarchy List
	ostream - Member Functions and Data by Group
	Constructors & Destructor
	Insertion Functions
	Output operators
	Positioning Functions
	Prefix and Suffix Functions

	ostream - Inherited Member Functions and Data

	ostream_withassign
	ostream_withassign - Hierarchy List
	ostream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operator

	ostream_withassign - Inherited Member Functions and Data

	ostrstream
	ostrstream - Hierarchy List
	ostrstream - Member Functions and Data by Group
	Constructors & Destructor
	Stream Buffer Functions

	ostrstream - Inherited Member Functions and Data

	stdiobuf
	stdiobuf - Hierarchy List
	stdiobuf - Member Functions and Data by Group
	Constructors & Destructor
	Positioning Functions
	Query Functions

	stdiobuf - Inherited Member Functions and Data

	stdiostream
	stdiostream - Hierarchy List
	stdiostream - Member Functions and Data by Group
	Constructors & Destructor
	Miscellaneous

	stdiostream - Inherited Member Functions and Data

	streambuf
	streambuf - Hierarchy List
	streambuf - Member Functions and Data by Group
	Constructors & Destructor
	Extraction Functions
	Get/Put Pointer Functions
	Insertion Functions
	Locking functions
	Stream Buffer Functions

	streambuf - Inherited Member Functions and Data

	strstream
	strstream - Hierarchy List
	strstream - Member Functions and Data by Group
	Constructors & Destructor
	Stream Buffer Functions

	strstream - Inherited Member Functions and Data

	strstreambase
	strstreambase - Hierarchy List
	strstreambase - Member Functions and Data by Group
	Constructors & Destructor
	Misc

	strstreambase - Inherited Member Functions and Data

	strstreambuf
	strstreambuf - Hierarchy List
	strstreambuf - Member Functions and Data by Group
	Constructors & Destructor
	Get/Put Pointer Functions
	Insertion & Extraction Functions
	Stream Buffer Functions

	strstreambuf - Inherited Member Functions and Data


	Notices
	Programming Interface Information
	Trademarks and Service Marks


